extension | φ:Q→Aut N | d | ρ | Label | ID |
C10.1(S3xQ8) = Dic15:5Q8 | φ: S3xQ8/Dic6 → C2 ⊆ Aut C10 | 480 | | C10.1(S3xQ8) | 480,401 |
C10.2(S3xQ8) = Dic15:Q8 | φ: S3xQ8/Dic6 → C2 ⊆ Aut C10 | 480 | | C10.2(S3xQ8) | 480,405 |
C10.3(S3xQ8) = Dic15:6Q8 | φ: S3xQ8/Dic6 → C2 ⊆ Aut C10 | 480 | | C10.3(S3xQ8) | 480,407 |
C10.4(S3xQ8) = Dic15.Q8 | φ: S3xQ8/Dic6 → C2 ⊆ Aut C10 | 480 | | C10.4(S3xQ8) | 480,412 |
C10.5(S3xQ8) = Dic15.2Q8 | φ: S3xQ8/Dic6 → C2 ⊆ Aut C10 | 480 | | C10.5(S3xQ8) | 480,415 |
C10.6(S3xQ8) = Dic15:7Q8 | φ: S3xQ8/Dic6 → C2 ⊆ Aut C10 | 480 | | C10.6(S3xQ8) | 480,420 |
C10.7(S3xQ8) = D30:8Q8 | φ: S3xQ8/Dic6 → C2 ⊆ Aut C10 | 240 | | C10.7(S3xQ8) | 480,453 |
C10.8(S3xQ8) = Dic15.4Q8 | φ: S3xQ8/Dic6 → C2 ⊆ Aut C10 | 480 | | C10.8(S3xQ8) | 480,458 |
C10.9(S3xQ8) = D30:9Q8 | φ: S3xQ8/Dic6 → C2 ⊆ Aut C10 | 240 | | C10.9(S3xQ8) | 480,459 |
C10.10(S3xQ8) = Dic15:8Q8 | φ: S3xQ8/Dic6 → C2 ⊆ Aut C10 | 480 | | C10.10(S3xQ8) | 480,461 |
C10.11(S3xQ8) = D30:10Q8 | φ: S3xQ8/Dic6 → C2 ⊆ Aut C10 | 240 | | C10.11(S3xQ8) | 480,466 |
C10.12(S3xQ8) = D30.Q8 | φ: S3xQ8/Dic6 → C2 ⊆ Aut C10 | 240 | | C10.12(S3xQ8) | 480,480 |
C10.13(S3xQ8) = D30:Q8 | φ: S3xQ8/Dic6 → C2 ⊆ Aut C10 | 240 | | C10.13(S3xQ8) | 480,487 |
C10.14(S3xQ8) = D30:2Q8 | φ: S3xQ8/Dic6 → C2 ⊆ Aut C10 | 240 | | C10.14(S3xQ8) | 480,495 |
C10.15(S3xQ8) = D30:3Q8 | φ: S3xQ8/Dic6 → C2 ⊆ Aut C10 | 240 | | C10.15(S3xQ8) | 480,500 |
C10.16(S3xQ8) = D30:4Q8 | φ: S3xQ8/Dic6 → C2 ⊆ Aut C10 | 240 | | C10.16(S3xQ8) | 480,505 |
C10.17(S3xQ8) = D30.2Q8 | φ: S3xQ8/Dic6 → C2 ⊆ Aut C10 | 240 | | C10.17(S3xQ8) | 480,513 |
C10.18(S3xQ8) = C20:Dic6 | φ: S3xQ8/Dic6 → C2 ⊆ Aut C10 | 480 | | C10.18(S3xQ8) | 480,546 |
C10.19(S3xQ8) = Dic3:5Dic10 | φ: S3xQ8/C4xS3 → C2 ⊆ Aut C10 | 480 | | C10.19(S3xQ8) | 480,400 |
C10.20(S3xQ8) = Dic15:1Q8 | φ: S3xQ8/C4xS3 → C2 ⊆ Aut C10 | 480 | | C10.20(S3xQ8) | 480,403 |
C10.21(S3xQ8) = Dic3:Dic10 | φ: S3xQ8/C4xS3 → C2 ⊆ Aut C10 | 480 | | C10.21(S3xQ8) | 480,404 |
C10.22(S3xQ8) = Dic3xDic10 | φ: S3xQ8/C4xS3 → C2 ⊆ Aut C10 | 480 | | C10.22(S3xQ8) | 480,406 |
C10.23(S3xQ8) = Dic30:14C4 | φ: S3xQ8/C4xS3 → C2 ⊆ Aut C10 | 480 | | C10.23(S3xQ8) | 480,416 |
C10.24(S3xQ8) = Dic3.Dic10 | φ: S3xQ8/C4xS3 → C2 ⊆ Aut C10 | 480 | | C10.24(S3xQ8) | 480,419 |
C10.25(S3xQ8) = Dic3.2Dic10 | φ: S3xQ8/C4xS3 → C2 ⊆ Aut C10 | 480 | | C10.25(S3xQ8) | 480,422 |
C10.26(S3xQ8) = D6:Dic10 | φ: S3xQ8/C4xS3 → C2 ⊆ Aut C10 | 240 | | C10.26(S3xQ8) | 480,428 |
C10.27(S3xQ8) = C60.45D4 | φ: S3xQ8/C4xS3 → C2 ⊆ Aut C10 | 240 | | C10.27(S3xQ8) | 480,441 |
C10.28(S3xQ8) = C60.46D4 | φ: S3xQ8/C4xS3 → C2 ⊆ Aut C10 | 240 | | C10.28(S3xQ8) | 480,445 |
C10.29(S3xQ8) = Dic3.3Dic10 | φ: S3xQ8/C4xS3 → C2 ⊆ Aut C10 | 480 | | C10.29(S3xQ8) | 480,455 |
C10.30(S3xQ8) = C60.48D4 | φ: S3xQ8/C4xS3 → C2 ⊆ Aut C10 | 480 | | C10.30(S3xQ8) | 480,465 |
C10.31(S3xQ8) = S3xC10.D4 | φ: S3xQ8/C4xS3 → C2 ⊆ Aut C10 | 240 | | C10.31(S3xQ8) | 480,475 |
C10.32(S3xQ8) = D6:1Dic10 | φ: S3xQ8/C4xS3 → C2 ⊆ Aut C10 | 240 | | C10.32(S3xQ8) | 480,486 |
C10.33(S3xQ8) = D6:2Dic10 | φ: S3xQ8/C4xS3 → C2 ⊆ Aut C10 | 240 | | C10.33(S3xQ8) | 480,493 |
C10.34(S3xQ8) = S3xC4:Dic5 | φ: S3xQ8/C4xS3 → C2 ⊆ Aut C10 | 240 | | C10.34(S3xQ8) | 480,502 |
C10.35(S3xQ8) = D6:3Dic10 | φ: S3xQ8/C4xS3 → C2 ⊆ Aut C10 | 240 | | C10.35(S3xQ8) | 480,508 |
C10.36(S3xQ8) = D6:4Dic10 | φ: S3xQ8/C4xS3 → C2 ⊆ Aut C10 | 240 | | C10.36(S3xQ8) | 480,512 |
C10.37(S3xQ8) = C20:4Dic6 | φ: S3xQ8/C4xS3 → C2 ⊆ Aut C10 | 480 | | C10.37(S3xQ8) | 480,545 |
C10.38(S3xQ8) = Dic15:10Q8 | φ: S3xQ8/C3xQ8 → C2 ⊆ Aut C10 | 480 | | C10.38(S3xQ8) | 480,852 |
C10.39(S3xQ8) = C4:Dic30 | φ: S3xQ8/C3xQ8 → C2 ⊆ Aut C10 | 480 | | C10.39(S3xQ8) | 480,853 |
C10.40(S3xQ8) = Dic15.3Q8 | φ: S3xQ8/C3xQ8 → C2 ⊆ Aut C10 | 480 | | C10.40(S3xQ8) | 480,854 |
C10.41(S3xQ8) = C4:C4xD15 | φ: S3xQ8/C3xQ8 → C2 ⊆ Aut C10 | 240 | | C10.41(S3xQ8) | 480,856 |
C10.42(S3xQ8) = D30:5Q8 | φ: S3xQ8/C3xQ8 → C2 ⊆ Aut C10 | 240 | | C10.42(S3xQ8) | 480,861 |
C10.43(S3xQ8) = D30:6Q8 | φ: S3xQ8/C3xQ8 → C2 ⊆ Aut C10 | 240 | | C10.43(S3xQ8) | 480,862 |
C10.44(S3xQ8) = Dic15:4Q8 | φ: S3xQ8/C3xQ8 → C2 ⊆ Aut C10 | 480 | | C10.44(S3xQ8) | 480,909 |
C10.45(S3xQ8) = Q8xDic15 | φ: S3xQ8/C3xQ8 → C2 ⊆ Aut C10 | 480 | | C10.45(S3xQ8) | 480,910 |
C10.46(S3xQ8) = D30:7Q8 | φ: S3xQ8/C3xQ8 → C2 ⊆ Aut C10 | 240 | | C10.46(S3xQ8) | 480,911 |
C10.47(S3xQ8) = C5xDic6:C4 | central extension (φ=1) | 480 | | C10.47(S3xQ8) | 480,766 |
C10.48(S3xQ8) = C5xC12:Q8 | central extension (φ=1) | 480 | | C10.48(S3xQ8) | 480,767 |
C10.49(S3xQ8) = C5xDic3.Q8 | central extension (φ=1) | 480 | | C10.49(S3xQ8) | 480,768 |
C10.50(S3xQ8) = C5xS3xC4:C4 | central extension (φ=1) | 240 | | C10.50(S3xQ8) | 480,770 |
C10.51(S3xQ8) = C5xD6:Q8 | central extension (φ=1) | 240 | | C10.51(S3xQ8) | 480,775 |
C10.52(S3xQ8) = C5xC4.D12 | central extension (φ=1) | 240 | | C10.52(S3xQ8) | 480,776 |
C10.53(S3xQ8) = C5xDic3:Q8 | central extension (φ=1) | 480 | | C10.53(S3xQ8) | 480,823 |
C10.54(S3xQ8) = C5xQ8xDic3 | central extension (φ=1) | 480 | | C10.54(S3xQ8) | 480,824 |
C10.55(S3xQ8) = C5xD6:3Q8 | central extension (φ=1) | 240 | | C10.55(S3xQ8) | 480,825 |