Extensions 1→N→G→Q→1 with N=C2xS3xDic5 and Q=C2

Direct product G=NxQ with N=C2xS3xDic5 and Q=C2
dρLabelID
C22xS3xDic5240C2^2xS3xDic5480,1115

Semidirect products G=N:Q with N=C2xS3xDic5 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2xS3xDic5):1C2 = Dic5:4D12φ: C2/C1C2 ⊆ Out C2xS3xDic5240(C2xS3xDic5):1C2480,481
(C2xS3xDic5):2C2 = Dic15:14D4φ: C2/C1C2 ⊆ Out C2xS3xDic5240(C2xS3xDic5):2C2480,482
(C2xS3xDic5):3C2 = Dic5xD12φ: C2/C1C2 ⊆ Out C2xS3xDic5240(C2xS3xDic5):3C2480,491
(C2xS3xDic5):4C2 = Dic5:D12φ: C2/C1C2 ⊆ Out C2xS3xDic5240(C2xS3xDic5):4C2480,492
(C2xS3xDic5):5C2 = (C2xD12).D5φ: C2/C1C2 ⊆ Out C2xS3xDic5240(C2xS3xDic5):5C2480,499
(C2xS3xDic5):6C2 = D6.D20φ: C2/C1C2 ⊆ Out C2xS3xDic5240(C2xS3xDic5):6C2480,503
(C2xS3xDic5):7C2 = Dic15:8D4φ: C2/C1C2 ⊆ Out C2xS3xDic5240(C2xS3xDic5):7C2480,511
(C2xS3xDic5):8C2 = D6:(C4xD5)φ: C2/C1C2 ⊆ Out C2xS3xDic5240(C2xS3xDic5):8C2480,516
(C2xS3xDic5):9C2 = Dic15:9D4φ: C2/C1C2 ⊆ Out C2xS3xDic5240(C2xS3xDic5):9C2480,518
(C2xS3xDic5):10C2 = Dic15:2D4φ: C2/C1C2 ⊆ Out C2xS3xDic5240(C2xS3xDic5):10C2480,529
(C2xS3xDic5):11C2 = D6.9D20φ: C2/C1C2 ⊆ Out C2xS3xDic5240(C2xS3xDic5):11C2480,533
(C2xS3xDic5):12C2 = S3xD10:C4φ: C2/C1C2 ⊆ Out C2xS3xDic5120(C2xS3xDic5):12C2480,548
(C2xS3xDic5):13C2 = Dic5xC3:D4φ: C2/C1C2 ⊆ Out C2xS3xDic5240(C2xS3xDic5):13C2480,627
(C2xS3xDic5):14C2 = S3xC23.D5φ: C2/C1C2 ⊆ Out C2xS3xDic5120(C2xS3xDic5):14C2480,630
(C2xS3xDic5):15C2 = (S3xC10).D4φ: C2/C1C2 ⊆ Out C2xS3xDic5240(C2xS3xDic5):15C2480,631
(C2xS3xDic5):16C2 = Dic15:4D4φ: C2/C1C2 ⊆ Out C2xS3xDic5240(C2xS3xDic5):16C2480,634
(C2xS3xDic5):17C2 = Dic15:17D4φ: C2/C1C2 ⊆ Out C2xS3xDic5240(C2xS3xDic5):17C2480,636
(C2xS3xDic5):18C2 = (S3xC10):D4φ: C2/C1C2 ⊆ Out C2xS3xDic5240(C2xS3xDic5):18C2480,641
(C2xS3xDic5):19C2 = C2xD12:D5φ: C2/C1C2 ⊆ Out C2xS3xDic5240(C2xS3xDic5):19C2480,1079
(C2xS3xDic5):20C2 = C2xD12:5D5φ: C2/C1C2 ⊆ Out C2xS3xDic5240(C2xS3xDic5):20C2480,1084
(C2xS3xDic5):21C2 = S3xD4:2D5φ: C2/C1C2 ⊆ Out C2xS3xDic51208-(C2xS3xDic5):21C2480,1099
(C2xS3xDic5):22C2 = C2xC30.C23φ: C2/C1C2 ⊆ Out C2xS3xDic5240(C2xS3xDic5):22C2480,1114
(C2xS3xDic5):23C2 = C2xDic3.D10φ: C2/C1C2 ⊆ Out C2xS3xDic5240(C2xS3xDic5):23C2480,1116
(C2xS3xDic5):24C2 = C2xS3xC5:D4φ: C2/C1C2 ⊆ Out C2xS3xDic5120(C2xS3xDic5):24C2480,1123
(C2xS3xDic5):25C2 = S3xC2xC4xD5φ: trivial image120(C2xS3xDic5):25C2480,1086

Non-split extensions G=N.Q with N=C2xS3xDic5 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2xS3xDic5).1C2 = D6.(C4xD5)φ: C2/C1C2 ⊆ Out C2xS3xDic5240(C2xS3xDic5).1C2480,474
(C2xS3xDic5).2C2 = S3xC10.D4φ: C2/C1C2 ⊆ Out C2xS3xDic5240(C2xS3xDic5).2C2480,475
(C2xS3xDic5).3C2 = (S3xDic5):C4φ: C2/C1C2 ⊆ Out C2xS3xDic5240(C2xS3xDic5).3C2480,476
(C2xS3xDic5).4C2 = D6:1Dic10φ: C2/C1C2 ⊆ Out C2xS3xDic5240(C2xS3xDic5).4C2480,486
(C2xS3xDic5).5C2 = D6:2Dic10φ: C2/C1C2 ⊆ Out C2xS3xDic5240(C2xS3xDic5).5C2480,493
(C2xS3xDic5).6C2 = S3xC4:Dic5φ: C2/C1C2 ⊆ Out C2xS3xDic5240(C2xS3xDic5).6C2480,502
(C2xS3xDic5).7C2 = D6:3Dic10φ: C2/C1C2 ⊆ Out C2xS3xDic5240(C2xS3xDic5).7C2480,508
(C2xS3xDic5).8C2 = D6:4Dic10φ: C2/C1C2 ⊆ Out C2xS3xDic5240(C2xS3xDic5).8C2480,512
(C2xS3xDic5).9C2 = C2xS3xDic10φ: C2/C1C2 ⊆ Out C2xS3xDic5240(C2xS3xDic5).9C2480,1078
(C2xS3xDic5).10C2 = Dic5.22D12φ: C2/C1C2 ⊆ Out C2xS3xDic5240(C2xS3xDic5).10C2480,246
(C2xS3xDic5).11C2 = C2xS3xC5:C8φ: C2/C1C2 ⊆ Out C2xS3xDic5240(C2xS3xDic5).11C2480,1002
(C2xS3xDic5).12C2 = S3xC22.F5φ: C2/C1C2 ⊆ Out C2xS3xDic51208-(C2xS3xDic5).12C2480,1004
(C2xS3xDic5).13C2 = C2xD6.F5φ: C2/C1C2 ⊆ Out C2xS3xDic5240(C2xS3xDic5).13C2480,1008
(C2xS3xDic5).14C2 = C4xS3xDic5φ: trivial image240(C2xS3xDic5).14C2480,473

׿
x
:
Z
F
o
wr
Q
<