Extensions 1→N→G→Q→1 with N=C3xC4:Dic5 and Q=C2

Direct product G=NxQ with N=C3xC4:Dic5 and Q=C2
dρLabelID
C6xC4:Dic5480C6xC4:Dic5480,718

Semidirect products G=N:Q with N=C3xC4:Dic5 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3xC4:Dic5):1C2 = D60:12C4φ: C2/C1C2 ⊆ Out C3xC4:Dic5240(C3xC4:Dic5):1C2480,44
(C3xC4:Dic5):2C2 = (S3xC20):5C4φ: C2/C1C2 ⊆ Out C3xC4:Dic5240(C3xC4:Dic5):2C2480,414
(C3xC4:Dic5):3C2 = C60.45D4φ: C2/C1C2 ⊆ Out C3xC4:Dic5240(C3xC4:Dic5):3C2480,441
(C3xC4:Dic5):4C2 = S3xC4:Dic5φ: C2/C1C2 ⊆ Out C3xC4:Dic5240(C3xC4:Dic5):4C2480,502
(C3xC4:Dic5):5C2 = D60:14C4φ: C2/C1C2 ⊆ Out C3xC4:Dic5240(C3xC4:Dic5):5C2480,504
(C3xC4:Dic5):6C2 = C60:6D4φ: C2/C1C2 ⊆ Out C3xC4:Dic5240(C3xC4:Dic5):6C2480,536
(C3xC4:Dic5):7C2 = D12:Dic5φ: C2/C1C2 ⊆ Out C3xC4:Dic5240(C3xC4:Dic5):7C2480,42
(C3xC4:Dic5):8C2 = (C4xD15):8C4φ: C2/C1C2 ⊆ Out C3xC4:Dic5240(C3xC4:Dic5):8C2480,423
(C3xC4:Dic5):9C2 = D30:9Q8φ: C2/C1C2 ⊆ Out C3xC4:Dic5240(C3xC4:Dic5):9C2480,459
(C3xC4:Dic5):10C2 = Dic15:8D4φ: C2/C1C2 ⊆ Out C3xC4:Dic5240(C3xC4:Dic5):10C2480,511
(C3xC4:Dic5):11C2 = D30.2Q8φ: C2/C1C2 ⊆ Out C3xC4:Dic5240(C3xC4:Dic5):11C2480,513
(C3xC4:Dic5):12C2 = C20:2D12φ: C2/C1C2 ⊆ Out C3xC4:Dic5240(C3xC4:Dic5):12C2480,542
(C3xC4:Dic5):13C2 = C3xD20:5C4φ: C2/C1C2 ⊆ Out C3xC4:Dic5240(C3xC4:Dic5):13C2480,99
(C3xC4:Dic5):14C2 = D6:C4.D5φ: C2/C1C2 ⊆ Out C3xC4:Dic5240(C3xC4:Dic5):14C2480,417
(C3xC4:Dic5):15C2 = C4:Dic5:S3φ: C2/C1C2 ⊆ Out C3xC4:Dic5240(C3xC4:Dic5):15C2480,421
(C3xC4:Dic5):16C2 = D6.D20φ: C2/C1C2 ⊆ Out C3xC4:Dic5240(C3xC4:Dic5):16C2480,503
(C3xC4:Dic5):17C2 = D30:4Q8φ: C2/C1C2 ⊆ Out C3xC4:Dic5240(C3xC4:Dic5):17C2480,505
(C3xC4:Dic5):18C2 = D6:4Dic10φ: C2/C1C2 ⊆ Out C3xC4:Dic5240(C3xC4:Dic5):18C2480,512
(C3xC4:Dic5):19C2 = D30.7D4φ: C2/C1C2 ⊆ Out C3xC4:Dic5240(C3xC4:Dic5):19C2480,514
(C3xC4:Dic5):20C2 = C3xDic5.14D4φ: C2/C1C2 ⊆ Out C3xC4:Dic5240(C3xC4:Dic5):20C2480,671
(C3xC4:Dic5):21C2 = C3xC23.D10φ: C2/C1C2 ⊆ Out C3xC4:Dic5240(C3xC4:Dic5):21C2480,672
(C3xC4:Dic5):22C2 = C3xD10.12D4φ: C2/C1C2 ⊆ Out C3xC4:Dic5240(C3xC4:Dic5):22C2480,676
(C3xC4:Dic5):23C2 = C3xC22.D20φ: C2/C1C2 ⊆ Out C3xC4:Dic5240(C3xC4:Dic5):23C2480,679
(C3xC4:Dic5):24C2 = C3xD10:2Q8φ: C2/C1C2 ⊆ Out C3xC4:Dic5240(C3xC4:Dic5):24C2480,690
(C3xC4:Dic5):25C2 = C3xC4:C4:D5φ: C2/C1C2 ⊆ Out C3xC4:Dic5240(C3xC4:Dic5):25C2480,691
(C3xC4:Dic5):26C2 = C3xC20.48D4φ: C2/C1C2 ⊆ Out C3xC4:Dic5240(C3xC4:Dic5):26C2480,717
(C3xC4:Dic5):27C2 = C3xC20:7D4φ: C2/C1C2 ⊆ Out C3xC4:Dic5240(C3xC4:Dic5):27C2480,723
(C3xC4:Dic5):28C2 = C3xD4:Dic5φ: C2/C1C2 ⊆ Out C3xC4:Dic5240(C3xC4:Dic5):28C2480,110
(C3xC4:Dic5):29C2 = C3xD5xC4:C4φ: C2/C1C2 ⊆ Out C3xC4:Dic5240(C3xC4:Dic5):29C2480,684
(C3xC4:Dic5):30C2 = C3xC4:C4:7D5φ: C2/C1C2 ⊆ Out C3xC4:Dic5240(C3xC4:Dic5):30C2480,685
(C3xC4:Dic5):31C2 = C3xD4xDic5φ: C2/C1C2 ⊆ Out C3xC4:Dic5240(C3xC4:Dic5):31C2480,727
(C3xC4:Dic5):32C2 = C3xC20:2D4φ: C2/C1C2 ⊆ Out C3xC4:Dic5240(C3xC4:Dic5):32C2480,731
(C3xC4:Dic5):33C2 = C3xD10:3Q8φ: C2/C1C2 ⊆ Out C3xC4:Dic5240(C3xC4:Dic5):33C2480,739
(C3xC4:Dic5):34C2 = C12xD20φ: trivial image240(C3xC4:Dic5):34C2480,666
(C3xC4:Dic5):35C2 = C3xC23.21D10φ: trivial image240(C3xC4:Dic5):35C2480,719

Non-split extensions G=N.Q with N=C3xC4:Dic5 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3xC4:Dic5).1C2 = Dic30:12C4φ: C2/C1C2 ⊆ Out C3xC4:Dic5480(C3xC4:Dic5).1C2480,50
(C3xC4:Dic5).2C2 = C60.Q8φ: C2/C1C2 ⊆ Out C3xC4:Dic5480(C3xC4:Dic5).2C2480,63
(C3xC4:Dic5).3C2 = C60.5Q8φ: C2/C1C2 ⊆ Out C3xC4:Dic5480(C3xC4:Dic5).3C2480,66
(C3xC4:Dic5).4C2 = Dic30:14C4φ: C2/C1C2 ⊆ Out C3xC4:Dic5480(C3xC4:Dic5).4C2480,416
(C3xC4:Dic5).5C2 = C60.6Q8φ: C2/C1C2 ⊆ Out C3xC4:Dic5480(C3xC4:Dic5).5C2480,457
(C3xC4:Dic5).6C2 = C20:4Dic6φ: C2/C1C2 ⊆ Out C3xC4:Dic5480(C3xC4:Dic5).6C2480,545
(C3xC4:Dic5).7C2 = Dic6:Dic5φ: C2/C1C2 ⊆ Out C3xC4:Dic5480(C3xC4:Dic5).7C2480,48
(C3xC4:Dic5).8C2 = C30.SD16φ: C2/C1C2 ⊆ Out C3xC4:Dic5480(C3xC4:Dic5).8C2480,62
(C3xC4:Dic5).9C2 = C30.20D8φ: C2/C1C2 ⊆ Out C3xC4:Dic5480(C3xC4:Dic5).9C2480,65
(C3xC4:Dic5).10C2 = Dic15:7Q8φ: C2/C1C2 ⊆ Out C3xC4:Dic5480(C3xC4:Dic5).10C2480,420
(C3xC4:Dic5).11C2 = C12.Dic10φ: C2/C1C2 ⊆ Out C3xC4:Dic5480(C3xC4:Dic5).11C2480,460
(C3xC4:Dic5).12C2 = C20:Dic6φ: C2/C1C2 ⊆ Out C3xC4:Dic5480(C3xC4:Dic5).12C2480,546
(C3xC4:Dic5).13C2 = C3xC20.44D4φ: C2/C1C2 ⊆ Out C3xC4:Dic5480(C3xC4:Dic5).13C2480,94
(C3xC4:Dic5).14C2 = C3xC40:6C4φ: C2/C1C2 ⊆ Out C3xC4:Dic5480(C3xC4:Dic5).14C2480,95
(C3xC4:Dic5).15C2 = C3xC40:5C4φ: C2/C1C2 ⊆ Out C3xC4:Dic5480(C3xC4:Dic5).15C2480,96
(C3xC4:Dic5).16C2 = Dic15.2Q8φ: C2/C1C2 ⊆ Out C3xC4:Dic5480(C3xC4:Dic5).16C2480,415
(C3xC4:Dic5).17C2 = Dic3.2Dic10φ: C2/C1C2 ⊆ Out C3xC4:Dic5480(C3xC4:Dic5).17C2480,422
(C3xC4:Dic5).18C2 = C3xC20:2Q8φ: C2/C1C2 ⊆ Out C3xC4:Dic5480(C3xC4:Dic5).18C2480,662
(C3xC4:Dic5).19C2 = C3xC20.6Q8φ: C2/C1C2 ⊆ Out C3xC4:Dic5480(C3xC4:Dic5).19C2480,663
(C3xC4:Dic5).20C2 = C3xDic5.Q8φ: C2/C1C2 ⊆ Out C3xC4:Dic5480(C3xC4:Dic5).20C2480,682
(C3xC4:Dic5).21C2 = C3xC4.Dic10φ: C2/C1C2 ⊆ Out C3xC4:Dic5480(C3xC4:Dic5).21C2480,683
(C3xC4:Dic5).22C2 = C3xC10.D8φ: C2/C1C2 ⊆ Out C3xC4:Dic5480(C3xC4:Dic5).22C2480,85
(C3xC4:Dic5).23C2 = C3xC20.Q8φ: C2/C1C2 ⊆ Out C3xC4:Dic5480(C3xC4:Dic5).23C2480,86
(C3xC4:Dic5).24C2 = C3xQ8:Dic5φ: C2/C1C2 ⊆ Out C3xC4:Dic5480(C3xC4:Dic5).24C2480,113
(C3xC4:Dic5).25C2 = C3xC20:Q8φ: C2/C1C2 ⊆ Out C3xC4:Dic5480(C3xC4:Dic5).25C2480,681
(C3xC4:Dic5).26C2 = C3xQ8xDic5φ: C2/C1C2 ⊆ Out C3xC4:Dic5480(C3xC4:Dic5).26C2480,738
(C3xC4:Dic5).27C2 = C12xDic10φ: trivial image480(C3xC4:Dic5).27C2480,661

׿
x
:
Z
F
o
wr
Q
<