Extensions 1→N→G→Q→1 with N=C2xC15:Q8 and Q=C2

Direct product G=NxQ with N=C2xC15:Q8 and Q=C2
dρLabelID
C22xC15:Q8480C2^2xC15:Q8480,1121

Semidirect products G=N:Q with N=C2xC15:Q8 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2xC15:Q8):1C2 = D10:Dic6φ: C2/C1C2 ⊆ Out C2xC15:Q8240(C2xC15:Q8):1C2480,425
(C2xC15:Q8):2C2 = Dic5.8D12φ: C2/C1C2 ⊆ Out C2xC15:Q8240(C2xC15:Q8):2C2480,426
(C2xC15:Q8):3C2 = D6:Dic10φ: C2/C1C2 ⊆ Out C2xC15:Q8240(C2xC15:Q8):3C2480,428
(C2xC15:Q8):4C2 = Dic3.D20φ: C2/C1C2 ⊆ Out C2xC15:Q8240(C2xC15:Q8):4C2480,429
(C2xC15:Q8):5C2 = D30:8Q8φ: C2/C1C2 ⊆ Out C2xC15:Q8240(C2xC15:Q8):5C2480,453
(C2xC15:Q8):6C2 = D6:2Dic10φ: C2/C1C2 ⊆ Out C2xC15:Q8240(C2xC15:Q8):6C2480,493
(C2xC15:Q8):7C2 = D30:2Q8φ: C2/C1C2 ⊆ Out C2xC15:Q8240(C2xC15:Q8):7C2480,495
(C2xC15:Q8):8C2 = D10:2Dic6φ: C2/C1C2 ⊆ Out C2xC15:Q8240(C2xC15:Q8):8C2480,498
(C2xC15:Q8):9C2 = D30:4Q8φ: C2/C1C2 ⊆ Out C2xC15:Q8240(C2xC15:Q8):9C2480,505
(C2xC15:Q8):10C2 = Dic15.D4φ: C2/C1C2 ⊆ Out C2xC15:Q8240(C2xC15:Q8):10C2480,506
(C2xC15:Q8):11C2 = D6:4Dic10φ: C2/C1C2 ⊆ Out C2xC15:Q8240(C2xC15:Q8):11C2480,512
(C2xC15:Q8):12C2 = Dic15.31D4φ: C2/C1C2 ⊆ Out C2xC15:Q8240(C2xC15:Q8):12C2480,540
(C2xC15:Q8):13C2 = C23.D5:S3φ: C2/C1C2 ⊆ Out C2xC15:Q8240(C2xC15:Q8):13C2480,601
(C2xC15:Q8):14C2 = Dic15.19D4φ: C2/C1C2 ⊆ Out C2xC15:Q8240(C2xC15:Q8):14C2480,602
(C2xC15:Q8):15C2 = C6.(D4xD5)φ: C2/C1C2 ⊆ Out C2xC15:Q8240(C2xC15:Q8):15C2480,610
(C2xC15:Q8):16C2 = (C2xC30):Q8φ: C2/C1C2 ⊆ Out C2xC15:Q8240(C2xC15:Q8):16C2480,650
(C2xC15:Q8):17C2 = (C2xC10):8Dic6φ: C2/C1C2 ⊆ Out C2xC15:Q8240(C2xC15:Q8):17C2480,651
(C2xC15:Q8):18C2 = Dic15.48D4φ: C2/C1C2 ⊆ Out C2xC15:Q8240(C2xC15:Q8):18C2480,652
(C2xC15:Q8):19C2 = C2xD5xDic6φ: C2/C1C2 ⊆ Out C2xC15:Q8240(C2xC15:Q8):19C2480,1073
(C2xC15:Q8):20C2 = C2xS3xDic10φ: C2/C1C2 ⊆ Out C2xC15:Q8240(C2xC15:Q8):20C2480,1078
(C2xC15:Q8):21C2 = C2xD15:Q8φ: C2/C1C2 ⊆ Out C2xC15:Q8240(C2xC15:Q8):21C2480,1082
(C2xC15:Q8):22C2 = C15:2- 1+4φ: C2/C1C2 ⊆ Out C2xC15:Q82408-(C2xC15:Q8):22C2480,1096
(C2xC15:Q8):23C2 = C2xDic5.D6φ: C2/C1C2 ⊆ Out C2xC15:Q8240(C2xC15:Q8):23C2480,1113
(C2xC15:Q8):24C2 = C2xC30.C23φ: C2/C1C2 ⊆ Out C2xC15:Q8240(C2xC15:Q8):24C2480,1114
(C2xC15:Q8):25C2 = C2xDic3.D10φ: C2/C1C2 ⊆ Out C2xC15:Q8240(C2xC15:Q8):25C2480,1116
(C2xC15:Q8):26C2 = C2xD6.D10φ: trivial image240(C2xC15:Q8):26C2480,1083

Non-split extensions G=N.Q with N=C2xC15:Q8 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2xC15:Q8).1C2 = Dic5:5Dic6φ: C2/C1C2 ⊆ Out C2xC15:Q8480(C2xC15:Q8).1C2480,399
(C2xC15:Q8).2C2 = Dic3:5Dic10φ: C2/C1C2 ⊆ Out C2xC15:Q8480(C2xC15:Q8).2C2480,400
(C2xC15:Q8).3C2 = Dic15:5Q8φ: C2/C1C2 ⊆ Out C2xC15:Q8480(C2xC15:Q8).3C2480,401
(C2xC15:Q8).4C2 = Dic15:1Q8φ: C2/C1C2 ⊆ Out C2xC15:Q8480(C2xC15:Q8).4C2480,403
(C2xC15:Q8).5C2 = Dic3:Dic10φ: C2/C1C2 ⊆ Out C2xC15:Q8480(C2xC15:Q8).5C2480,404
(C2xC15:Q8).6C2 = Dic15:Q8φ: C2/C1C2 ⊆ Out C2xC15:Q8480(C2xC15:Q8).6C2480,405
(C2xC15:Q8).7C2 = C60:Q8φ: C2/C1C2 ⊆ Out C2xC15:Q8480(C2xC15:Q8).7C2480,544
(C2xC15:Q8).8C2 = C20:4Dic6φ: C2/C1C2 ⊆ Out C2xC15:Q8480(C2xC15:Q8).8C2480,545
(C2xC15:Q8).9C2 = C20:Dic6φ: C2/C1C2 ⊆ Out C2xC15:Q8480(C2xC15:Q8).9C2480,546
(C2xC15:Q8).10C2 = Dic5.4D12φ: C2/C1C2 ⊆ Out C2xC15:Q82408-(C2xC15:Q8).10C2480,251
(C2xC15:Q8).11C2 = C4xC15:Q8φ: trivial image480(C2xC15:Q8).11C2480,543

׿
x
:
Z
F
o
wr
Q
<