Extensions 1→N→G→Q→1 with N=C8xD5 and Q=S3

Direct product G=NxQ with N=C8xD5 and Q=S3
dρLabelID
S3xC8xD51204S3xC8xD5480,319

Semidirect products G=N:Q with N=C8xD5 and Q=S3
extensionφ:Q→Out NdρLabelID
(C8xD5):1S3 = D5xD24φ: S3/C3C2 ⊆ Out C8xD51204+(C8xD5):1S3480,324
(C8xD5):2S3 = D24:7D5φ: S3/C3C2 ⊆ Out C8xD52404-(C8xD5):2S3480,346
(C8xD5):3S3 = D120:C2φ: S3/C3C2 ⊆ Out C8xD52404+(C8xD5):3S3480,347
(C8xD5):4S3 = D5xC24:C2φ: S3/C3C2 ⊆ Out C8xD51204(C8xD5):4S3480,323
(C8xD5):5S3 = C40.31D6φ: S3/C3C2 ⊆ Out C8xD52404(C8xD5):5S3480,345
(C8xD5):6S3 = C40.54D6φ: S3/C3C2 ⊆ Out C8xD52404(C8xD5):6S3480,341
(C8xD5):7S3 = D5xC8:S3φ: S3/C3C2 ⊆ Out C8xD51204(C8xD5):7S3480,320
(C8xD5):8S3 = C40.34D6φ: S3/C3C2 ⊆ Out C8xD52404(C8xD5):8S3480,342

Non-split extensions G=N.Q with N=C8xD5 and Q=S3
extensionφ:Q→Out NdρLabelID
(C8xD5).1S3 = D5xDic12φ: S3/C3C2 ⊆ Out C8xD52404-(C8xD5).1S3480,335
(C8xD5).2S3 = C40.51D6φ: S3/C3C2 ⊆ Out C8xD52404(C8xD5).2S3480,10
(C8xD5).3S3 = D5.D24φ: S3/C3C2 ⊆ Out C8xD51204(C8xD5).3S3480,299
(C8xD5).4S3 = C24.1F5φ: S3/C3C2 ⊆ Out C8xD52404(C8xD5).4S3480,301
(C8xD5).5S3 = C120:C4φ: S3/C3C2 ⊆ Out C8xD51204(C8xD5).5S3480,298
(C8xD5).6S3 = C40.Dic3φ: S3/C3C2 ⊆ Out C8xD52404(C8xD5).6S3480,300
(C8xD5).7S3 = C24.F5φ: S3/C3C2 ⊆ Out C8xD52404(C8xD5).7S3480,294
(C8xD5).8S3 = C120.C4φ: S3/C3C2 ⊆ Out C8xD52404(C8xD5).8S3480,295
(C8xD5).9S3 = C8xC3:F5φ: S3/C3C2 ⊆ Out C8xD51204(C8xD5).9S3480,296
(C8xD5).10S3 = C24:F5φ: S3/C3C2 ⊆ Out C8xD51204(C8xD5).10S3480,297
(C8xD5).11S3 = D5xC3:C16φ: trivial image2404(C8xD5).11S3480,7

׿
x
:
Z
F
o
wr
Q
<