Extensions 1→N→G→Q→1 with N=A4xC20 and Q=C2

Direct product G=NxQ with N=A4xC20 and Q=C2
dρLabelID
A4xC2xC20120A4xC2xC20480,1126

Semidirect products G=N:Q with N=A4xC20 and Q=C2
extensionφ:Q→Out NdρLabelID
(A4xC20):1C2 = C20:S4φ: C2/C1C2 ⊆ Out A4xC20606+(A4xC20):1C2480,1026
(A4xC20):2C2 = C4xC5:S4φ: C2/C1C2 ⊆ Out A4xC20606(A4xC20):2C2480,1025
(A4xC20):3C2 = A4xD20φ: C2/C1C2 ⊆ Out A4xC20606+(A4xC20):3C2480,1037
(A4xC20):4C2 = C5xC4:S4φ: C2/C1C2 ⊆ Out A4xC20606(A4xC20):4C2480,1015
(A4xC20):5C2 = C4xD5xA4φ: C2/C1C2 ⊆ Out A4xC20606(A4xC20):5C2480,1036
(A4xC20):6C2 = C20xS4φ: C2/C1C2 ⊆ Out A4xC20603(A4xC20):6C2480,1014
(A4xC20):7C2 = C5xD4xA4φ: C2/C1C2 ⊆ Out A4xC20606(A4xC20):7C2480,1127

Non-split extensions G=N.Q with N=A4xC20 and Q=C2
extensionφ:Q→Out NdρLabelID
(A4xC20).1C2 = C20.1S4φ: C2/C1C2 ⊆ Out A4xC201206-(A4xC20).1C2480,1024
(A4xC20).2C2 = C20.S4φ: C2/C1C2 ⊆ Out A4xC201206(A4xC20).2C2480,259
(A4xC20).3C2 = A4xDic10φ: C2/C1C2 ⊆ Out A4xC201206-(A4xC20).3C2480,1035
(A4xC20).4C2 = C5xA4:Q8φ: C2/C1C2 ⊆ Out A4xC201206(A4xC20).4C2480,1013
(A4xC20).5C2 = A4xC5:2C8φ: C2/C1C2 ⊆ Out A4xC201206(A4xC20).5C2480,265
(A4xC20).6C2 = C5xA4:C8φ: C2/C1C2 ⊆ Out A4xC201203(A4xC20).6C2480,255
(A4xC20).7C2 = C5xQ8xA4φ: C2/C1C2 ⊆ Out A4xC201206(A4xC20).7C2480,1129
(A4xC20).8C2 = A4xC40φ: trivial image1203(A4xC20).8C2480,659

׿
x
:
Z
F
o
wr
Q
<