Extensions 1→N→G→Q→1 with N=C5xD4:S3 and Q=C2

Direct product G=NxQ with N=C5xD4:S3 and Q=C2
dρLabelID
C10xD4:S3240C10xD4:S3480,810

Semidirect products G=N:Q with N=C5xD4:S3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C5xD4:S3):1C2 = D5xD4:S3φ: C2/C1C2 ⊆ Out C5xD4:S31208+(C5xD4:S3):1C2480,553
(C5xD4:S3):2C2 = Dic10:3D6φ: C2/C1C2 ⊆ Out C5xD4:S31208+(C5xD4:S3):2C2480,554
(C5xD4:S3):3C2 = D15:D8φ: C2/C1C2 ⊆ Out C5xD4:S31208+(C5xD4:S3):3C2480,557
(C5xD4:S3):4C2 = D30.8D4φ: C2/C1C2 ⊆ Out C5xD4:S31208-(C5xD4:S3):4C2480,558
(C5xD4:S3):5C2 = D12:10D10φ: C2/C1C2 ⊆ Out C5xD4:S31208-(C5xD4:S3):5C2480,565
(C5xD4:S3):6C2 = D12.24D10φ: C2/C1C2 ⊆ Out C5xD4:S32408-(C5xD4:S3):6C2480,566
(C5xD4:S3):7C2 = D30.11D4φ: C2/C1C2 ⊆ Out C5xD4:S32408-(C5xD4:S3):7C2480,575
(C5xD4:S3):8C2 = D12:5D10φ: C2/C1C2 ⊆ Out C5xD4:S31208+(C5xD4:S3):8C2480,576
(C5xD4:S3):9C2 = C5xS3xD8φ: C2/C1C2 ⊆ Out C5xD4:S31204(C5xD4:S3):9C2480,789
(C5xD4:S3):10C2 = C5xD8:S3φ: C2/C1C2 ⊆ Out C5xD4:S31204(C5xD4:S3):10C2480,790
(C5xD4:S3):11C2 = C5xQ8:3D6φ: C2/C1C2 ⊆ Out C5xD4:S31204(C5xD4:S3):11C2480,793
(C5xD4:S3):12C2 = C5xQ8.7D6φ: C2/C1C2 ⊆ Out C5xD4:S32404(C5xD4:S3):12C2480,795
(C5xD4:S3):13C2 = C5xD12:6C22φ: C2/C1C2 ⊆ Out C5xD4:S31204(C5xD4:S3):13C2480,811
(C5xD4:S3):14C2 = C5xD4:D6φ: C2/C1C2 ⊆ Out C5xD4:S31204(C5xD4:S3):14C2480,828
(C5xD4:S3):15C2 = C5xQ8.13D6φ: trivial image2404(C5xD4:S3):15C2480,829


׿
x
:
Z
F
o
wr
Q
<