Extensions 1→N→G→Q→1 with N=C2xD60 and Q=C2

Direct product G=NxQ with N=C2xD60 and Q=C2
dρLabelID
C22xD60240C2^2xD60480,1167

Semidirect products G=N:Q with N=C2xD60 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2xD60):1C2 = D30:D4φ: C2/C1C2 ⊆ Out C2xD60240(C2xD60):1C2480,496
(C2xD60):2C2 = D30:2D4φ: C2/C1C2 ⊆ Out C2xD60240(C2xD60):2C2480,535
(C2xD60):3C2 = D30:5D4φ: C2/C1C2 ⊆ Out C2xD60120(C2xD60):3C2480,552
(C2xD60):4C2 = C42:6D15φ: C2/C1C2 ⊆ Out C2xD60240(C2xD60):4C2480,839
(C2xD60):5C2 = D30:16D4φ: C2/C1C2 ⊆ Out C2xD60120(C2xD60):5C2480,847
(C2xD60):6C2 = D30:9D4φ: C2/C1C2 ⊆ Out C2xD60240(C2xD60):6C2480,849
(C2xD60):7C2 = C4:D60φ: C2/C1C2 ⊆ Out C2xD60240(C2xD60):7C2480,860
(C2xD60):8C2 = C2xD120φ: C2/C1C2 ⊆ Out C2xD60240(C2xD60):8C2480,868
(C2xD60):9C2 = C60:29D4φ: C2/C1C2 ⊆ Out C2xD60240(C2xD60):9C2480,895
(C2xD60):10C2 = C8:D30φ: C2/C1C2 ⊆ Out C2xD601204+(C2xD60):10C2480,873
(C2xD60):11C2 = C2xD4:D15φ: C2/C1C2 ⊆ Out C2xD60240(C2xD60):11C2480,896
(C2xD60):12C2 = C60:3D4φ: C2/C1C2 ⊆ Out C2xD60240(C2xD60):12C2480,905
(C2xD60):13C2 = D4:D30φ: C2/C1C2 ⊆ Out C2xD601204+(C2xD60):13C2480,914
(C2xD60):14C2 = C2xD4xD15φ: C2/C1C2 ⊆ Out C2xD60120(C2xD60):14C2480,1169
(C2xD60):15C2 = C2xQ8:3D15φ: C2/C1C2 ⊆ Out C2xD60240(C2xD60):15C2480,1173
(C2xD60):16C2 = D4:8D30φ: C2/C1C2 ⊆ Out C2xD601204+(C2xD60):16C2480,1176
(C2xD60):17C2 = D20:19D6φ: C2/C1C2 ⊆ Out C2xD601204+(C2xD60):17C2480,377
(C2xD60):18C2 = C60.38D4φ: C2/C1C2 ⊆ Out C2xD601204+(C2xD60):18C2480,381
(C2xD60):19C2 = D20:29D6φ: C2/C1C2 ⊆ Out C2xD601204+(C2xD60):19C2480,1095
(C2xD60):20C2 = C2xC3:D40φ: C2/C1C2 ⊆ Out C2xD60240(C2xD60):20C2480,376
(C2xD60):21C2 = C12:D20φ: C2/C1C2 ⊆ Out C2xD60240(C2xD60):21C2480,534
(C2xD60):22C2 = C60:6D4φ: C2/C1C2 ⊆ Out C2xD60240(C2xD60):22C2480,536
(C2xD60):23C2 = C2xD60:C2φ: C2/C1C2 ⊆ Out C2xD60240(C2xD60):23C2480,1081
(C2xD60):24C2 = C2xS3xD20φ: C2/C1C2 ⊆ Out C2xD60120(C2xD60):24C2480,1088
(C2xD60):25C2 = C2xC5:D24φ: C2/C1C2 ⊆ Out C2xD60240(C2xD60):25C2480,378
(C2xD60):26C2 = C12:7D20φ: C2/C1C2 ⊆ Out C2xD60240(C2xD60):26C2480,526
(C2xD60):27C2 = C20:D12φ: C2/C1C2 ⊆ Out C2xD60240(C2xD60):27C2480,527
(C2xD60):28C2 = C2xC12.28D10φ: C2/C1C2 ⊆ Out C2xD60240(C2xD60):28C2480,1085
(C2xD60):29C2 = C2xD5xD12φ: C2/C1C2 ⊆ Out C2xD60120(C2xD60):29C2480,1087
(C2xD60):30C2 = C2xD60:11C2φ: trivial image240(C2xD60):30C2480,1168

Non-split extensions G=N.Q with N=C2xD60 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2xD60).1C2 = D60:8C4φ: C2/C1C2 ⊆ Out C2xD60240(C2xD60).1C2480,181
(C2xD60).2C2 = D30.6D4φ: C2/C1C2 ⊆ Out C2xD60240(C2xD60).2C2480,509
(C2xD60).3C2 = C42:7D15φ: C2/C1C2 ⊆ Out C2xD60240(C2xD60).3C2480,840
(C2xD60).4C2 = D30.29D4φ: C2/C1C2 ⊆ Out C2xD60240(C2xD60).4C2480,859
(C2xD60).5C2 = C2xC24:D5φ: C2/C1C2 ⊆ Out C2xD60240(C2xD60).5C2480,867
(C2xD60).6C2 = D60:9C4φ: C2/C1C2 ⊆ Out C2xD60240(C2xD60).6C2480,169
(C2xD60).7C2 = M4(2):D15φ: C2/C1C2 ⊆ Out C2xD601204+(C2xD60).7C2480,183
(C2xD60).8C2 = D60:11C4φ: C2/C1C2 ⊆ Out C2xD60240(C2xD60).8C2480,858
(C2xD60).9C2 = C2xQ8:2D15φ: C2/C1C2 ⊆ Out C2xD60240(C2xD60).9C2480,906
(C2xD60).10C2 = C60.23D4φ: C2/C1C2 ⊆ Out C2xD60240(C2xD60).10C2480,912
(C2xD60).11C2 = C60.29D4φ: C2/C1C2 ⊆ Out C2xD601204+(C2xD60).11C2480,36
(C2xD60).12C2 = D60:12C4φ: C2/C1C2 ⊆ Out C2xD60240(C2xD60).12C2480,44
(C2xD60).13C2 = C2xC15:SD16φ: C2/C1C2 ⊆ Out C2xD60240(C2xD60).13C2480,390
(C2xD60).14C2 = C60.47D4φ: C2/C1C2 ⊆ Out C2xD60240(C2xD60).14C2480,450
(C2xD60).15C2 = D60:14C4φ: C2/C1C2 ⊆ Out C2xD60240(C2xD60).15C2480,504
(C2xD60).16C2 = D60:15C4φ: C2/C1C2 ⊆ Out C2xD60240(C2xD60).16C2480,45
(C2xD60).17C2 = C2xDic6:D5φ: C2/C1C2 ⊆ Out C2xD60240(C2xD60).17C2480,393
(C2xD60).18C2 = C60.70D4φ: C2/C1C2 ⊆ Out C2xD60240(C2xD60).18C2480,451
(C2xD60).19C2 = D60:17C4φ: C2/C1C2 ⊆ Out C2xD60240(C2xD60).19C2480,494
(C2xD60).20C2 = C4xD60φ: trivial image240(C2xD60).20C2480,838

׿
x
:
Z
F
o
wr
Q
<