Extensions 1→N→G→Q→1 with N=C2xC8 and Q=C30

Direct product G=NxQ with N=C2xC8 and Q=C30
dρLabelID
C22xC120480C2^2xC120480,934

Semidirect products G=N:Q with N=C2xC8 and Q=C30
extensionφ:Q→Aut NdρLabelID
(C2xC8):1C30 = C15xC22:C8φ: C30/C15C2 ⊆ Aut C2xC8240(C2xC8):1C30480,201
(C2xC8):2C30 = C15xD4:C4φ: C30/C15C2 ⊆ Aut C2xC8240(C2xC8):2C30480,205
(C2xC8):3C30 = D8xC30φ: C30/C15C2 ⊆ Aut C2xC8240(C2xC8):3C30480,937
(C2xC8):4C30 = C15xC4oD8φ: C30/C15C2 ⊆ Aut C2xC82402(C2xC8):4C30480,940
(C2xC8):5C30 = SD16xC30φ: C30/C15C2 ⊆ Aut C2xC8240(C2xC8):5C30480,938
(C2xC8):6C30 = M4(2)xC30φ: C30/C15C2 ⊆ Aut C2xC8240(C2xC8):6C30480,935
(C2xC8):7C30 = C15xC8oD4φ: C30/C15C2 ⊆ Aut C2xC82402(C2xC8):7C30480,936

Non-split extensions G=N.Q with N=C2xC8 and Q=C30
extensionφ:Q→Aut NdρLabelID
(C2xC8).1C30 = C15xQ8:C4φ: C30/C15C2 ⊆ Aut C2xC8480(C2xC8).1C30480,206
(C2xC8).2C30 = C15xC4:C8φ: C30/C15C2 ⊆ Aut C2xC8480(C2xC8).2C30480,208
(C2xC8).3C30 = C15xC2.D8φ: C30/C15C2 ⊆ Aut C2xC8480(C2xC8).3C30480,210
(C2xC8).4C30 = Q16xC30φ: C30/C15C2 ⊆ Aut C2xC8480(C2xC8).4C30480,939
(C2xC8).5C30 = C15xC8.C4φ: C30/C15C2 ⊆ Aut C2xC82402(C2xC8).5C30480,211
(C2xC8).6C30 = C15xC4.Q8φ: C30/C15C2 ⊆ Aut C2xC8480(C2xC8).6C30480,209
(C2xC8).7C30 = C15xC8:C4φ: C30/C15C2 ⊆ Aut C2xC8480(C2xC8).7C30480,200
(C2xC8).8C30 = C15xM5(2)φ: C30/C15C2 ⊆ Aut C2xC82402(C2xC8).8C30480,213

׿
x
:
Z
F
o
wr
Q
<