Extensions 1→N→G→Q→1 with N=C4xS3 and Q=D10

Direct product G=NxQ with N=C4xS3 and Q=D10
dρLabelID
S3xC2xC4xD5120S3xC2xC4xD5480,1086

Semidirect products G=N:Q with N=C4xS3 and Q=D10
extensionφ:Q→Out NdρLabelID
(C4xS3):1D10 = D20:25D6φ: D10/C5C22 ⊆ Out C4xS31204(C4xS3):1D10480,1093
(C4xS3):2D10 = D20:29D6φ: D10/C5C22 ⊆ Out C4xS31204+(C4xS3):2D10480,1095
(C4xS3):3D10 = D20:13D6φ: D10/C5C22 ⊆ Out C4xS31208-(C4xS3):3D10480,1101
(C4xS3):4D10 = D20:14D6φ: D10/C5C22 ⊆ Out C4xS31208+(C4xS3):4D10480,1102
(C4xS3):5D10 = D12:14D10φ: D10/C5C22 ⊆ Out C4xS31208+(C4xS3):5D10480,1103
(C4xS3):6D10 = D20:17D6φ: D10/C5C22 ⊆ Out C4xS31208+(C4xS3):6D10480,1111
(C4xS3):7D10 = S3xD4xD5φ: D10/D5C2 ⊆ Out C4xS3608+(C4xS3):7D10480,1097
(C4xS3):8D10 = D5xD4:2S3φ: D10/D5C2 ⊆ Out C4xS31208-(C4xS3):8D10480,1098
(C4xS3):9D10 = D30.C23φ: D10/D5C2 ⊆ Out C4xS31208+(C4xS3):9D10480,1100
(C4xS3):10D10 = D5xQ8:3S3φ: D10/D5C2 ⊆ Out C4xS31208+(C4xS3):10D10480,1108
(C4xS3):11D10 = D20:16D6φ: D10/D5C2 ⊆ Out C4xS31208-(C4xS3):11D10480,1110
(C4xS3):12D10 = D5xC4oD12φ: D10/D5C2 ⊆ Out C4xS31204(C4xS3):12D10480,1090
(C4xS3):13D10 = D20:24D6φ: D10/D5C2 ⊆ Out C4xS31204(C4xS3):13D10480,1092
(C4xS3):14D10 = C2xD20:5S3φ: D10/C10C2 ⊆ Out C4xS3240(C4xS3):14D10480,1074
(C4xS3):15D10 = C2xD60:C2φ: D10/C10C2 ⊆ Out C4xS3240(C4xS3):15D10480,1081
(C4xS3):16D10 = C2xS3xD20φ: D10/C10C2 ⊆ Out C4xS3120(C4xS3):16D10480,1088
(C4xS3):17D10 = S3xC4oD20φ: D10/C10C2 ⊆ Out C4xS31204(C4xS3):17D10480,1091
(C4xS3):18D10 = C2xD6.D10φ: D10/C10C2 ⊆ Out C4xS3240(C4xS3):18D10480,1083

Non-split extensions G=N.Q with N=C4xS3 and Q=D10
extensionφ:Q→Out NdρLabelID
(C4xS3).1D10 = C40:1D6φ: D10/C5C22 ⊆ Out C4xS31204+(C4xS3).1D10480,329
(C4xS3).2D10 = D40:S3φ: D10/C5C22 ⊆ Out C4xS31204(C4xS3).2D10480,330
(C4xS3).3D10 = Dic20:S3φ: D10/C5C22 ⊆ Out C4xS32404(C4xS3).3D10480,339
(C4xS3).4D10 = C40.2D6φ: D10/C5C22 ⊆ Out C4xS32404-(C4xS3).4D10480,350
(C4xS3).5D10 = D60.C22φ: D10/C5C22 ⊆ Out C4xS31208+(C4xS3).5D10480,556
(C4xS3).6D10 = C60.10C23φ: D10/C5C22 ⊆ Out C4xS32408-(C4xS3).6D10480,562
(C4xS3).7D10 = D20:10D6φ: D10/C5C22 ⊆ Out C4xS31208-(C4xS3).7D10480,570
(C4xS3).8D10 = D12.9D10φ: D10/C5C22 ⊆ Out C4xS31208+(C4xS3).8D10480,572
(C4xS3).9D10 = D12:D10φ: D10/C5C22 ⊆ Out C4xS31208+(C4xS3).9D10480,580
(C4xS3).10D10 = Dic10.26D6φ: D10/C5C22 ⊆ Out C4xS32408-(C4xS3).10D10480,586
(C4xS3).11D10 = D20.28D6φ: D10/C5C22 ⊆ Out C4xS32408-(C4xS3).11D10480,594
(C4xS3).12D10 = C60.44C23φ: D10/C5C22 ⊆ Out C4xS32408+(C4xS3).12D10480,596
(C4xS3).13D10 = D20.39D6φ: D10/C5C22 ⊆ Out C4xS32404-(C4xS3).13D10480,1077
(C4xS3).14D10 = C30.C24φ: D10/C5C22 ⊆ Out C4xS32404(C4xS3).14D10480,1080
(C4xS3).15D10 = C15:2- 1+4φ: D10/C5C22 ⊆ Out C4xS32408-(C4xS3).15D10480,1096
(C4xS3).16D10 = D20.29D6φ: D10/C5C22 ⊆ Out C4xS32408-(C4xS3).16D10480,1104
(C4xS3).17D10 = C30.33C24φ: D10/C5C22 ⊆ Out C4xS32408+(C4xS3).17D10480,1105
(C4xS3).18D10 = D12.29D10φ: D10/C5C22 ⊆ Out C4xS32408-(C4xS3).18D10480,1106
(C4xS3).19D10 = S3xD4:D5φ: D10/D5C2 ⊆ Out C4xS31208+(C4xS3).19D10480,555
(C4xS3).20D10 = S3xD4.D5φ: D10/D5C2 ⊆ Out C4xS31208-(C4xS3).20D10480,561
(C4xS3).21D10 = D20.24D6φ: D10/D5C2 ⊆ Out C4xS32408-(C4xS3).21D10480,569
(C4xS3).22D10 = C60.19C23φ: D10/D5C2 ⊆ Out C4xS32408+(C4xS3).22D10480,571
(C4xS3).23D10 = S3xQ8:D5φ: D10/D5C2 ⊆ Out C4xS31208+(C4xS3).23D10480,579
(C4xS3).24D10 = S3xC5:Q16φ: D10/D5C2 ⊆ Out C4xS32408-(C4xS3).24D10480,585
(C4xS3).25D10 = D20.27D6φ: D10/D5C2 ⊆ Out C4xS32408-(C4xS3).25D10480,593
(C4xS3).26D10 = Dic10.27D6φ: D10/D5C2 ⊆ Out C4xS32408+(C4xS3).26D10480,595
(C4xS3).27D10 = S3xD4:2D5φ: D10/D5C2 ⊆ Out C4xS31208-(C4xS3).27D10480,1099
(C4xS3).28D10 = S3xQ8xD5φ: D10/D5C2 ⊆ Out C4xS31208-(C4xS3).28D10480,1107
(C4xS3).29D10 = S3xQ8:2D5φ: D10/D5C2 ⊆ Out C4xS31208+(C4xS3).29D10480,1109
(C4xS3).30D10 = D5xC8:S3φ: D10/D5C2 ⊆ Out C4xS31204(C4xS3).30D10480,320
(C4xS3).31D10 = C40:D6φ: D10/D5C2 ⊆ Out C4xS31204(C4xS3).31D10480,322
(C4xS3).32D10 = C40.34D6φ: D10/D5C2 ⊆ Out C4xS32404(C4xS3).32D10480,342
(C4xS3).33D10 = C40.35D6φ: D10/D5C2 ⊆ Out C4xS32404(C4xS3).33D10480,344
(C4xS3).34D10 = D12.2Dic5φ: D10/D5C2 ⊆ Out C4xS32404(C4xS3).34D10480,362
(C4xS3).35D10 = D12.Dic5φ: D10/D5C2 ⊆ Out C4xS32404(C4xS3).35D10480,364
(C4xS3).36D10 = S3xC40:C2φ: D10/C10C2 ⊆ Out C4xS31204(C4xS3).36D10480,327
(C4xS3).37D10 = S3xD40φ: D10/C10C2 ⊆ Out C4xS31204+(C4xS3).37D10480,328
(C4xS3).38D10 = S3xDic20φ: D10/C10C2 ⊆ Out C4xS32404-(C4xS3).38D10480,338
(C4xS3).39D10 = D6.1D20φ: D10/C10C2 ⊆ Out C4xS32404(C4xS3).39D10480,348
(C4xS3).40D10 = D40:7S3φ: D10/C10C2 ⊆ Out C4xS32404-(C4xS3).40D10480,349
(C4xS3).41D10 = D120:5C2φ: D10/C10C2 ⊆ Out C4xS32404+(C4xS3).41D10480,351
(C4xS3).42D10 = C2xS3xDic10φ: D10/C10C2 ⊆ Out C4xS3240(C4xS3).42D10480,1078
(C4xS3).43D10 = C40.54D6φ: D10/C10C2 ⊆ Out C4xS32404(C4xS3).43D10480,341
(C4xS3).44D10 = C40.55D6φ: D10/C10C2 ⊆ Out C4xS32404(C4xS3).44D10480,343
(C4xS3).45D10 = C2xD6.Dic5φ: D10/C10C2 ⊆ Out C4xS3240(C4xS3).45D10480,370
(C4xS3).46D10 = S3xC8xD5φ: trivial image1204(C4xS3).46D10480,319
(C4xS3).47D10 = S3xC8:D5φ: trivial image1204(C4xS3).47D10480,321
(C4xS3).48D10 = C2xS3xC5:2C8φ: trivial image240(C4xS3).48D10480,361
(C4xS3).49D10 = S3xC4.Dic5φ: trivial image1204(C4xS3).49D10480,363

׿
x
:
Z
F
o
wr
Q
<