Extensions 1→N→G→Q→1 with N=C2xC3.He3 and Q=C3

Direct product G=NxQ with N=C2xC3.He3 and Q=C3
dρLabelID
C6xC3.He3162C6xC3.He3486,213

Semidirect products G=N:Q with N=C2xC3.He3 and Q=C3
extensionφ:Q→Out NdρLabelID
(C2xC3.He3):1C3 = C2xC92:C3φ: C3/C1C3 ⊆ Out C2xC3.He3543(C2xC3.He3):1C3486,85
(C2xC3.He3):2C3 = C2xC32.He3φ: C3/C1C3 ⊆ Out C2xC3.He3549(C2xC3.He3):2C3486,88
(C2xC3.He3):3C3 = C2xC32.6He3φ: C3/C1C3 ⊆ Out C2xC3.He3549(C2xC3.He3):3C3486,90
(C2xC3.He3):4C3 = C2xC32.C33φ: C3/C1C3 ⊆ Out C2xC3.He3549(C2xC3.He3):4C3486,218
(C2xC3.He3):5C3 = C2xC9.2He3φ: C3/C1C3 ⊆ Out C2xC3.He3549(C2xC3.He3):5C3486,219
(C2xC3.He3):6C3 = C2xC9.He3φ: trivial image543(C2xC3.He3):6C3486,214

Non-split extensions G=N.Q with N=C2xC3.He3 and Q=C3
extensionφ:Q→Out NdρLabelID
(C2xC3.He3).1C3 = C2xC92.C3φ: C3/C1C3 ⊆ Out C2xC3.He3543(C2xC3.He3).1C3486,87
(C2xC3.He3).2C3 = C2xC32.5He3φ: C3/C1C3 ⊆ Out C2xC3.He3549(C2xC3.He3).2C3486,89

׿
x
:
Z
F
o
wr
Q
<