Extensions 1→N→G→Q→1 with N=C18 and Q=3- 1+2

Direct product G=NxQ with N=C18 and Q=3- 1+2
dρLabelID
C18x3- 1+2162C18xES-(3,1)486,195

Semidirect products G=N:Q with N=C18 and Q=3- 1+2
extensionφ:Q→Aut NdρLabelID
C18:13- 1+2 = C2xC92:7C3φ: 3- 1+2/C9C3 ⊆ Aut C18162C18:1ES-(3,1)486,202
C18:23- 1+2 = C2xC92:9C3φ: 3- 1+2/C9C3 ⊆ Aut C18162C18:2ES-(3,1)486,206
C18:33- 1+2 = C2xC9:3- 1+2φ: 3- 1+2/C32C3 ⊆ Aut C18162C18:3ES-(3,1)486,200

Non-split extensions G=N.Q with N=C18 and Q=3- 1+2
extensionφ:Q→Aut NdρLabelID
C18.13- 1+2 = C2xC9.5He3φ: 3- 1+2/C9C3 ⊆ Aut C181623C18.1ES-(3,1)486,79
C18.23- 1+2 = C2xC9.6He3φ: 3- 1+2/C9C3 ⊆ Aut C181623C18.2ES-(3,1)486,80
C18.33- 1+2 = C2xC92:8C3φ: 3- 1+2/C9C3 ⊆ Aut C18162C18.3ES-(3,1)486,205
C18.43- 1+2 = C2xC9.4He3φ: 3- 1+2/C32C3 ⊆ Aut C18543C18.4ES-(3,1)486,76
C18.53- 1+2 = C2xC27:C9φ: 3- 1+2/C32C3 ⊆ Aut C18549C18.5ES-(3,1)486,82
C18.63- 1+2 = C2xC32:C27central extension (φ=1)162C18.6ES-(3,1)486,72
C18.73- 1+2 = C2xC9:C27central extension (φ=1)486C18.7ES-(3,1)486,81

׿
x
:
Z
F
o
wr
Q
<