Copied to
clipboard

G = SD16:C4order 64 = 26

1st semidirect product of SD16 and C4 acting via C4/C2=C2

p-group, metabelian, nilpotent (class 3), monomial

Aliases: SD16:1C4, C42.9C22, C8:2(C2xC4), Q8:2(C2xC4), (C4xQ8):2C2, C8:C4:1C2, D4.2(C2xC4), C2.D8:11C2, (C4xD4).5C2, C2.15(C4xD4), C4.4(C4oD4), (C2xC4).101D4, Q8:C4:16C2, D4:C4.6C2, C4:C4.53C22, C2.4(C8:C22), (C2xC8).49C22, C4.12(C22xC4), (C2xC4).76C23, (C2xSD16).1C2, C22.54(C2xD4), (C2xD4).52C22, C2.4(C8.C22), (C2xQ8).46C22, SmallGroup(64,121)

Series: Derived Chief Lower central Upper central Jennings

C1C4 — SD16:C4
C1C2C22C2xC4C42C4xD4 — SD16:C4
C1C2C4 — SD16:C4
C1C22C42 — SD16:C4
C1C2C2C2xC4 — SD16:C4

Generators and relations for SD16:C4
 G = < a,b,c | a8=b2=c4=1, bab=a3, cac-1=a5, bc=cb >

Subgroups: 101 in 60 conjugacy classes, 35 normal (25 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C8, C2xC4, C2xC4, D4, D4, Q8, Q8, C23, C42, C42, C22:C4, C4:C4, C4:C4, C2xC8, SD16, C22xC4, C2xD4, C2xQ8, C8:C4, D4:C4, Q8:C4, C2.D8, C4xD4, C4xQ8, C2xSD16, SD16:C4
Quotients: C1, C2, C4, C22, C2xC4, D4, C23, C22xC4, C2xD4, C4oD4, C4xD4, C8:C22, C8.C22, SD16:C4

Character table of SD16:C4

 class 12A2B2C2D2E4A4B4C4D4E4F4G4H4I4J4K4L8A8B8C8D
 size 1111442222224444444444
ρ11111111111111111111111    trivial
ρ21111-1-111-1-1-1-1111-1-11-11-11    linear of order 2
ρ311111111-1-1-1-1-1-1-111-1-11-11    linear of order 2
ρ41111-1-1111111-1-1-1-1-1-11111    linear of order 2
ρ51111-1-11111111-1111-1-1-1-1-1    linear of order 2
ρ611111111-1-1-1-11-11-1-1-11-11-1    linear of order 2
ρ71111-1-111-1-1-1-1-11-11111-11-1    linear of order 2
ρ8111111111111-11-1-1-11-1-1-1-1    linear of order 2
ρ91-11-11-11-1-ii-ii-i-ii-11ii-1-i1    linear of order 4
ρ101-11-1-111-1i-ii-i-i-ii1-1i-i-1i1    linear of order 4
ρ111-11-1-111-1-ii-ii-iii-11-i-i1i-1    linear of order 4
ρ121-11-11-11-1i-ii-i-iii1-1-ii1-i-1    linear of order 4
ρ131-11-1-111-1i-ii-ii-i-i-11ii1-i-1    linear of order 4
ρ141-11-11-11-1-ii-iii-i-i1-1i-i1i-1    linear of order 4
ρ151-11-11-11-1i-ii-iii-i-11-i-i-1i1    linear of order 4
ρ161-11-1-111-1-ii-iiii-i1-1-ii-1-i1    linear of order 4
ρ17222200-2-2-222-20000000000    orthogonal lifted from D4
ρ18222200-2-22-2-220000000000    orthogonal lifted from D4
ρ192-22-200-22-2i-2i2i2i0000000000    complex lifted from C4oD4
ρ202-22-200-222i2i-2i-2i0000000000    complex lifted from C4oD4
ρ214-4-44000000000000000000    orthogonal lifted from C8:C22
ρ2244-4-4000000000000000000    symplectic lifted from C8.C22, Schur index 2

Smallest permutation representation of SD16:C4
On 32 points
Generators in S32
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 32)(2 27)(3 30)(4 25)(5 28)(6 31)(7 26)(8 29)(9 21)(10 24)(11 19)(12 22)(13 17)(14 20)(15 23)(16 18)
(1 11 32 19)(2 16 25 24)(3 13 26 21)(4 10 27 18)(5 15 28 23)(6 12 29 20)(7 9 30 17)(8 14 31 22)

G:=sub<Sym(32)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,32)(2,27)(3,30)(4,25)(5,28)(6,31)(7,26)(8,29)(9,21)(10,24)(11,19)(12,22)(13,17)(14,20)(15,23)(16,18), (1,11,32,19)(2,16,25,24)(3,13,26,21)(4,10,27,18)(5,15,28,23)(6,12,29,20)(7,9,30,17)(8,14,31,22)>;

G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,32)(2,27)(3,30)(4,25)(5,28)(6,31)(7,26)(8,29)(9,21)(10,24)(11,19)(12,22)(13,17)(14,20)(15,23)(16,18), (1,11,32,19)(2,16,25,24)(3,13,26,21)(4,10,27,18)(5,15,28,23)(6,12,29,20)(7,9,30,17)(8,14,31,22) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,32),(2,27),(3,30),(4,25),(5,28),(6,31),(7,26),(8,29),(9,21),(10,24),(11,19),(12,22),(13,17),(14,20),(15,23),(16,18)], [(1,11,32,19),(2,16,25,24),(3,13,26,21),(4,10,27,18),(5,15,28,23),(6,12,29,20),(7,9,30,17),(8,14,31,22)]])

SD16:C4 is a maximal subgroup of
C42.352C23  C42.353C23  C42.354C23  C42.355C23  C42.357C23  C42.358C23  C42.360C23  C42.387C23  C42.390C23  SD16:6D4  SD16:8D4  C42.45C23  C42.46C23  C42.49C23  C42.50C23  C42.55C23  C42.57C23  C42.60C23  C42.62C23  C42.64C23  C42.508C23  C42.509C23  C42.511C23  C42.512C23  C42.513C23  C42.516C23  C42.517C23  C42.518C23  SD16:Q8  SD16:2Q8  SD16:3Q8  C42.75C23  C42.532C23  GL2(F3):C4
 C42.D2p: C42.383D4  C4xC8:C22  C4xC8.C22  C42.228D4  C42.229D4  C42.230D4  C42.232D4  C42.233D4 ...
 C2p.(C4xD4): C42.275C23  C42.276C23  C42.278C23  C42.280C23  D4.S3:C4  Q8:3(C4xS3)  C24:C2:C4  SD16:Dic3 ...
 C8:pD4:C2: C42.386C23  C42.391C23  SD16:D4  SD16:7D4  C42.43C23  C42.44C23  C42.56C23  C42.72C23 ...
SD16:C4 is a maximal quotient of
SD16:C8  D4.M4(2)  Q8:2M4(2)  C8:M4(2)  C8:C42  C4.Q8:9C4  C4.Q8:10C4  C8:(C4:C4)
 C42.D2p: D4:C42  Q8:C42  C42.16D6  C42.51D6  C42.56D6  C42.16D10  C42.51D10  C42.56D10 ...
 C2p.(C4xD4): C2.(C4xD8)  Q8:(C4:C4)  (C2xSD16):14C4  (C2xSD16):15C4  D4:C4:C4  C2.(C4xQ16)  C2.(C8:D4)  C2.(C8:2D4) ...

Matrix representation of SD16:C4 in GL6(F17)

080000
200000
0008011
00138311
0001109
0031149
,
1600000
010000
0016000
0016100
0000160
0000161
,
400000
040000
000010
000001
0016000
0001600

G:=sub<GL(6,GF(17))| [0,2,0,0,0,0,8,0,0,0,0,0,0,0,0,13,0,3,0,0,8,8,11,11,0,0,0,3,0,4,0,0,11,11,9,9],[16,0,0,0,0,0,0,1,0,0,0,0,0,0,16,16,0,0,0,0,0,1,0,0,0,0,0,0,16,16,0,0,0,0,0,1],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,1,0,0,0,0,0,0,1,0,0] >;

SD16:C4 in GAP, Magma, Sage, TeX

{\rm SD}_{16}\rtimes C_4
% in TeX

G:=Group("SD16:C4");
// GroupNames label

G:=SmallGroup(64,121);
// by ID

G=gap.SmallGroup(64,121);
# by ID

G:=PCGroup([6,-2,2,2,-2,2,-2,96,121,650,86,963,489,117]);
// Polycyclic

G:=Group<a,b,c|a^8=b^2=c^4=1,b*a*b=a^3,c*a*c^-1=a^5,b*c=c*b>;
// generators/relations

Export

Character table of SD16:C4 in TeX

׿
x
:
Z
F
o
wr
Q
<