Extensions 1→N→G→Q→1 with N=C2xD8 and Q=C2

Direct product G=NxQ with N=C2xD8 and Q=C2
dρLabelID
C22xD832C2^2xD864,250

Semidirect products G=N:Q with N=C2xD8 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2xD8):1C2 = C22:D8φ: C2/C1C2 ⊆ Out C2xD816(C2xD8):1C264,128
(C2xD8):2C2 = D4:D4φ: C2/C1C2 ⊆ Out C2xD832(C2xD8):2C264,130
(C2xD8):3C2 = C4:D8φ: C2/C1C2 ⊆ Out C2xD832(C2xD8):3C264,140
(C2xD8):4C2 = C8:7D4φ: C2/C1C2 ⊆ Out C2xD832(C2xD8):4C264,147
(C2xD8):5C2 = C8:4D4φ: C2/C1C2 ⊆ Out C2xD832(C2xD8):5C264,174
(C2xD8):6C2 = C2xD16φ: C2/C1C2 ⊆ Out C2xD832(C2xD8):6C264,186
(C2xD8):7C2 = C8:2D4φ: C2/C1C2 ⊆ Out C2xD832(C2xD8):7C264,150
(C2xD8):8C2 = D4.4D4φ: C2/C1C2 ⊆ Out C2xD8164+(C2xD8):8C264,153
(C2xD8):9C2 = C8:3D4φ: C2/C1C2 ⊆ Out C2xD832(C2xD8):9C264,177
(C2xD8):10C2 = C16:C22φ: C2/C1C2 ⊆ Out C2xD8164+(C2xD8):10C264,190
(C2xD8):11C2 = C2xC8:C22φ: C2/C1C2 ⊆ Out C2xD816(C2xD8):11C264,254
(C2xD8):12C2 = D4oD8φ: C2/C1C2 ⊆ Out C2xD8164+(C2xD8):12C264,257
(C2xD8):13C2 = C2xC4oD8φ: trivial image32(C2xD8):13C264,253

Non-split extensions G=N.Q with N=C2xD8 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2xD8).1C2 = C2.D16φ: C2/C1C2 ⊆ Out C2xD832(C2xD8).1C264,38
(C2xD8).2C2 = D4.2D4φ: C2/C1C2 ⊆ Out C2xD832(C2xD8).2C264,144
(C2xD8).3C2 = C8.12D4φ: C2/C1C2 ⊆ Out C2xD832(C2xD8).3C264,176
(C2xD8).4C2 = C2xSD32φ: C2/C1C2 ⊆ Out C2xD832(C2xD8).4C264,187
(C2xD8).5C2 = M5(2):C2φ: C2/C1C2 ⊆ Out C2xD8164+(C2xD8).5C264,42
(C2xD8).6C2 = D8:C4φ: C2/C1C2 ⊆ Out C2xD832(C2xD8).6C264,123
(C2xD8).7C2 = C4xD8φ: trivial image32(C2xD8).7C264,118

׿
x
:
Z
F
o
wr
Q
<