Copied to
clipboard

G = Q8.11D6order 96 = 25·3

1st non-split extension by Q8 of D6 acting via D6/C6=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C12.19D4, Q8.11D6, C12.15C23, D12.10C22, Dic6.9C22, (C6xQ8):2C2, (C2xQ8):4S3, C3:Q16:5C2, C6.54(C2xD4), (C2xC4).20D6, (C2xC6).42D4, C3:C8.3C22, Q8:2S3:5C2, C4oD12.5C2, C3:4(C8.C22), C4.Dic3:7C2, C4.17(C3:D4), C4.15(C22xS3), (C3xQ8).6C22, (C2xC12).37C22, C22.11(C3:D4), C2.18(C2xC3:D4), SmallGroup(96,149)

Series: Derived Chief Lower central Upper central

C1C12 — Q8.11D6
C1C3C6C12D12C4oD12 — Q8.11D6
C3C6C12 — Q8.11D6
C1C2C2xC4C2xQ8

Generators and relations for Q8.11D6
 G = < a,b,c,d | a4=1, b2=c6=d2=a2, bab-1=dad-1=a-1, ac=ca, cbc-1=a2b, dbd-1=ab, dcd-1=c5 >

Subgroups: 130 in 60 conjugacy classes, 29 normal (19 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C8, C2xC4, C2xC4, D4, Q8, Q8, Dic3, C12, C12, D6, C2xC6, M4(2), SD16, Q16, C2xQ8, C4oD4, C3:C8, Dic6, C4xS3, D12, C3:D4, C2xC12, C2xC12, C3xQ8, C3xQ8, C8.C22, C4.Dic3, Q8:2S3, C3:Q16, C4oD12, C6xQ8, Q8.11D6
Quotients: C1, C2, C22, S3, D4, C23, D6, C2xD4, C3:D4, C22xS3, C8.C22, C2xC3:D4, Q8.11D6

Character table of Q8.11D6

 class 12A2B2C34A4B4C4D4E6A6B6C8A8B12A12B12C12D12E12F
 size 1121222244122221212444444
ρ1111111111111111111111    trivial
ρ2111-111111-1111-1-1111111    linear of order 2
ρ3111-1111-1-1-111111-1-1-1-111    linear of order 2
ρ411-1-11-111-11-11-11-1-1-1111-1    linear of order 2
ρ511-1-11-11-111-11-1-1111-1-11-1    linear of order 2
ρ61111111-1-11111-1-1-1-1-1-111    linear of order 2
ρ711-111-111-1-1-11-1-11-1-1111-1    linear of order 2
ρ811-111-11-11-1-11-11-111-1-11-1    linear of order 2
ρ92220-122220-1-1-100-1-1-1-1-1-1    orthogonal lifted from S3
ρ1022-20-1-222-201-110011-1-1-11    orthogonal lifted from D6
ρ1122202-2-2000222000000-2-2    orthogonal lifted from D4
ρ1222-2022-2000-22-2000000-22    orthogonal lifted from D4
ρ1322-20-1-22-2201-1100-1-111-11    orthogonal lifted from D6
ρ142220-122-2-20-1-1-1001111-1-1    orthogonal lifted from D6
ρ152220-1-2-2000-1-1-100-3--3--3-311    complex lifted from C3:D4
ρ1622-20-12-20001-1100-3--3-3--31-1    complex lifted from C3:D4
ρ1722-20-12-20001-1100--3-3--3-31-1    complex lifted from C3:D4
ρ182220-1-2-2000-1-1-100--3-3-3--311    complex lifted from C3:D4
ρ194-4004000000-4000000000    symplectic lifted from C8.C22, Schur index 2
ρ204-400-200000-2-322-300000000    complex faithful
ρ214-400-2000002-32-2-300000000    complex faithful

Smallest permutation representation of Q8.11D6
On 48 points
Generators in S48
(1 38 7 44)(2 39 8 45)(3 40 9 46)(4 41 10 47)(5 42 11 48)(6 43 12 37)(13 32 19 26)(14 33 20 27)(15 34 21 28)(16 35 22 29)(17 36 23 30)(18 25 24 31)
(1 32 7 26)(2 27 8 33)(3 34 9 28)(4 29 10 35)(5 36 11 30)(6 31 12 25)(13 44 19 38)(14 39 20 45)(15 46 21 40)(16 41 22 47)(17 48 23 42)(18 43 24 37)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 6 7 12)(2 11 8 5)(3 4 9 10)(13 31 19 25)(14 36 20 30)(15 29 21 35)(16 34 22 28)(17 27 23 33)(18 32 24 26)(37 44 43 38)(39 42 45 48)(40 47 46 41)

G:=sub<Sym(48)| (1,38,7,44)(2,39,8,45)(3,40,9,46)(4,41,10,47)(5,42,11,48)(6,43,12,37)(13,32,19,26)(14,33,20,27)(15,34,21,28)(16,35,22,29)(17,36,23,30)(18,25,24,31), (1,32,7,26)(2,27,8,33)(3,34,9,28)(4,29,10,35)(5,36,11,30)(6,31,12,25)(13,44,19,38)(14,39,20,45)(15,46,21,40)(16,41,22,47)(17,48,23,42)(18,43,24,37), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,6,7,12)(2,11,8,5)(3,4,9,10)(13,31,19,25)(14,36,20,30)(15,29,21,35)(16,34,22,28)(17,27,23,33)(18,32,24,26)(37,44,43,38)(39,42,45,48)(40,47,46,41)>;

G:=Group( (1,38,7,44)(2,39,8,45)(3,40,9,46)(4,41,10,47)(5,42,11,48)(6,43,12,37)(13,32,19,26)(14,33,20,27)(15,34,21,28)(16,35,22,29)(17,36,23,30)(18,25,24,31), (1,32,7,26)(2,27,8,33)(3,34,9,28)(4,29,10,35)(5,36,11,30)(6,31,12,25)(13,44,19,38)(14,39,20,45)(15,46,21,40)(16,41,22,47)(17,48,23,42)(18,43,24,37), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,6,7,12)(2,11,8,5)(3,4,9,10)(13,31,19,25)(14,36,20,30)(15,29,21,35)(16,34,22,28)(17,27,23,33)(18,32,24,26)(37,44,43,38)(39,42,45,48)(40,47,46,41) );

G=PermutationGroup([[(1,38,7,44),(2,39,8,45),(3,40,9,46),(4,41,10,47),(5,42,11,48),(6,43,12,37),(13,32,19,26),(14,33,20,27),(15,34,21,28),(16,35,22,29),(17,36,23,30),(18,25,24,31)], [(1,32,7,26),(2,27,8,33),(3,34,9,28),(4,29,10,35),(5,36,11,30),(6,31,12,25),(13,44,19,38),(14,39,20,45),(15,46,21,40),(16,41,22,47),(17,48,23,42),(18,43,24,37)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,6,7,12),(2,11,8,5),(3,4,9,10),(13,31,19,25),(14,36,20,30),(15,29,21,35),(16,34,22,28),(17,27,23,33),(18,32,24,26),(37,44,43,38),(39,42,45,48),(40,47,46,41)]])

Q8.11D6 is a maximal subgroup of
D12.6D4  D12.7D4  C42:7D6  D12.15D4  C24.44D4  C24.29D4  D12.39D4  D12.40D4  SD16:13D6  D12.30D4  S3xC8.C22  D24:C22  C12.C24  D12.34C23  D12.35C23  C36.C23  Q8.D18  D12.32D6  Dic6.29D6  D12.24D6  Dic6.22D6  C62.134D4  SL2(F3).D6  D12.37D10  C12.D20  D12.27D10  C60.39C23  Q8.11D30
Q8.11D6 is a maximal quotient of
C4:C4.225D6  C4oD12:C4  (C2xC6).40D8  C4:C4.231D6  Q8.5Dic6  C42.56D6  Q8.6D12  C42.59D6  (C2xQ8).51D6  D12.37D4  C3:C8:6D4  C3:C8.6D4  C42.76D6  C42.77D6  C12:5SD16  C42.80D6  D12:6Q8  C42.82D6  C12:Q16  Dic6:6Q8  (C6xQ8):6C4  (C3xQ8):13D4  (C2xC6):8Q16  C36.C23  D12.32D6  Dic6.29D6  D12.24D6  Dic6.22D6  C62.134D4  D12.37D10  C12.D20  D12.27D10  C60.39C23  Q8.11D30

Matrix representation of Q8.11D6 in GL4(F7) generated by

6611
2041
3301
4351
,
1666
6036
1145
2562
,
0116
2514
1461
2223
,
0116
5502
6416
5211
G:=sub<GL(4,GF(7))| [6,2,3,4,6,0,3,3,1,4,0,5,1,1,1,1],[1,6,1,2,6,0,1,5,6,3,4,6,6,6,5,2],[0,2,1,2,1,5,4,2,1,1,6,2,6,4,1,3],[0,5,6,5,1,5,4,2,1,0,1,1,6,2,6,1] >;

Q8.11D6 in GAP, Magma, Sage, TeX

Q_8._{11}D_6
% in TeX

G:=Group("Q8.11D6");
// GroupNames label

G:=SmallGroup(96,149);
// by ID

G=gap.SmallGroup(96,149);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-3,103,218,188,86,579,159,69,2309]);
// Polycyclic

G:=Group<a,b,c,d|a^4=1,b^2=c^6=d^2=a^2,b*a*b^-1=d*a*d^-1=a^-1,a*c=c*a,c*b*c^-1=a^2*b,d*b*d^-1=a*b,d*c*d^-1=c^5>;
// generators/relations

Export

Character table of Q8.11D6 in TeX

׿
x
:
Z
F
o
wr
Q
<