Extensions 1→N→G→Q→1 with N=C2xD4 and Q=C6

Direct product G=NxQ with N=C2xD4 and Q=C6
dρLabelID
D4xC2xC648D4xC2xC696,221

Semidirect products G=N:Q with N=C2xD4 and Q=C6
extensionφ:Q→Out NdρLabelID
(C2xD4):1C6 = C3xC22wrC2φ: C6/C3C2 ⊆ Out C2xD424(C2xD4):1C696,167
(C2xD4):2C6 = C3xC4:D4φ: C6/C3C2 ⊆ Out C2xD448(C2xD4):2C696,168
(C2xD4):3C6 = C3xC4:1D4φ: C6/C3C2 ⊆ Out C2xD448(C2xD4):3C696,174
(C2xD4):4C6 = C6xD8φ: C6/C3C2 ⊆ Out C2xD448(C2xD4):4C696,179
(C2xD4):5C6 = C3xC8:C22φ: C6/C3C2 ⊆ Out C2xD4244(C2xD4):5C696,183
(C2xD4):6C6 = C3x2+ 1+4φ: C6/C3C2 ⊆ Out C2xD4244(C2xD4):6C696,224
(C2xD4):7C6 = C6xC4oD4φ: trivial image48(C2xD4):7C696,223

Non-split extensions G=N.Q with N=C2xD4 and Q=C6
extensionφ:Q→Out NdρLabelID
(C2xD4).1C6 = C3xC23:C4φ: C6/C3C2 ⊆ Out C2xD4244(C2xD4).1C696,49
(C2xD4).2C6 = C3xC4.D4φ: C6/C3C2 ⊆ Out C2xD4244(C2xD4).2C696,50
(C2xD4).3C6 = C3xD4:C4φ: C6/C3C2 ⊆ Out C2xD448(C2xD4).3C696,52
(C2xD4).4C6 = C3xC22.D4φ: C6/C3C2 ⊆ Out C2xD448(C2xD4).4C696,170
(C2xD4).5C6 = C3xC4.4D4φ: C6/C3C2 ⊆ Out C2xD448(C2xD4).5C696,171
(C2xD4).6C6 = C6xSD16φ: C6/C3C2 ⊆ Out C2xD448(C2xD4).6C696,180
(C2xD4).7C6 = D4xC12φ: trivial image48(C2xD4).7C696,165

׿
x
:
Z
F
o
wr
Q
<