Extensions 1→N→G→Q→1 with N=C3xQ16 and Q=C2

Direct product G=NxQ with N=C3xQ16 and Q=C2
dρLabelID
C6xQ1696C6xQ1696,181

Semidirect products G=N:Q with N=C3xQ16 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3xQ16):1C2 = C8.6D6φ: C2/C1C2 ⊆ Out C3xQ16484+(C3xQ16):1C296,35
(C3xQ16):2C2 = S3xQ16φ: C2/C1C2 ⊆ Out C3xQ16484-(C3xQ16):2C296,124
(C3xQ16):3C2 = D24:C2φ: C2/C1C2 ⊆ Out C3xQ16484+(C3xQ16):3C296,126
(C3xQ16):4C2 = Q16:S3φ: C2/C1C2 ⊆ Out C3xQ16484(C3xQ16):4C296,125
(C3xQ16):5C2 = C3xSD32φ: C2/C1C2 ⊆ Out C3xQ16482(C3xQ16):5C296,62
(C3xQ16):6C2 = C3xC8.C22φ: C2/C1C2 ⊆ Out C3xQ16484(C3xQ16):6C296,184
(C3xQ16):7C2 = C3xC4oD8φ: trivial image482(C3xQ16):7C296,182

Non-split extensions G=N.Q with N=C3xQ16 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3xQ16).1C2 = C3:Q32φ: C2/C1C2 ⊆ Out C3xQ16964-(C3xQ16).1C296,36
(C3xQ16).2C2 = C3xQ32φ: C2/C1C2 ⊆ Out C3xQ16962(C3xQ16).2C296,63

׿
x
:
Z
F
o
wr
Q
<