Extensions 1→N→G→Q→1 with N=C3xC4oD4 and Q=C2

Direct product G=NxQ with N=C3xC4oD4 and Q=C2
dρLabelID
C6xC4oD448C6xC4oD496,223

Semidirect products G=N:Q with N=C3xC4oD4 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3xC4oD4):1C2 = D4:D6φ: C2/C1C2 ⊆ Out C3xC4oD4244+(C3xC4oD4):1C296,156
(C3xC4oD4):2C2 = Q8.13D6φ: C2/C1C2 ⊆ Out C3xC4oD4484(C3xC4oD4):2C296,157
(C3xC4oD4):3C2 = S3xC4oD4φ: C2/C1C2 ⊆ Out C3xC4oD4244(C3xC4oD4):3C296,215
(C3xC4oD4):4C2 = D4oD12φ: C2/C1C2 ⊆ Out C3xC4oD4244+(C3xC4oD4):4C296,216
(C3xC4oD4):5C2 = Q8oD12φ: C2/C1C2 ⊆ Out C3xC4oD4484-(C3xC4oD4):5C296,217
(C3xC4oD4):6C2 = C3xC4oD8φ: C2/C1C2 ⊆ Out C3xC4oD4482(C3xC4oD4):6C296,182
(C3xC4oD4):7C2 = C3xC8:C22φ: C2/C1C2 ⊆ Out C3xC4oD4244(C3xC4oD4):7C296,183
(C3xC4oD4):8C2 = C3x2+ 1+4φ: C2/C1C2 ⊆ Out C3xC4oD4244(C3xC4oD4):8C296,224
(C3xC4oD4):9C2 = C3x2- 1+4φ: C2/C1C2 ⊆ Out C3xC4oD4484(C3xC4oD4):9C296,225

Non-split extensions G=N.Q with N=C3xC4oD4 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3xC4oD4).1C2 = Q8:3Dic3φ: C2/C1C2 ⊆ Out C3xC4oD4244(C3xC4oD4).1C296,44
(C3xC4oD4).2C2 = D4.Dic3φ: C2/C1C2 ⊆ Out C3xC4oD4484(C3xC4oD4).2C296,155
(C3xC4oD4).3C2 = Q8.14D6φ: C2/C1C2 ⊆ Out C3xC4oD4484-(C3xC4oD4).3C296,158
(C3xC4oD4).4C2 = C3xC4wrC2φ: C2/C1C2 ⊆ Out C3xC4oD4242(C3xC4oD4).4C296,54
(C3xC4oD4).5C2 = C3xC8.C22φ: C2/C1C2 ⊆ Out C3xC4oD4484(C3xC4oD4).5C296,184
(C3xC4oD4).6C2 = C3xC8oD4φ: trivial image482(C3xC4oD4).6C296,178

׿
x
:
Z
F
o
wr
Q
<