
BCCS: Computational methods for complex systems Tuesday, 8 June 2010

Lecture 1

Lecturer: Ashley Montanaro1 Computational complexity (1)

1 Overview

When is a problem tractable, and when is it intractable? In the next couple of lectures, I’ll discuss
ways in which we can attempt to answer this question rigorously. Remarkably, it will turn out that
many problems which we want to solve can be grouped together into complexity classes of similar
difficulty. As “the complexity of a problem” seems like a vague and woolly notion, the first step is
to write down some definitions to enable us to study this idea mathematically.

We’ll restrict ourselves to decision problems for now: problems where we have to output “yes” or
“no”. Such problems can be characterised in terms of languages. An alphabet Σ is a set of letters
(e.g. the binary alphabet {0, 1}). A word in Σ is a finite length string whose letters are picked from
Σ. The set of words in Σ is denoted Σ∗. Finally, a language L ⊆ Σ∗ is a set of words. For example:

• The language of prime numbers L = {m : m is prime}, written in binary;

• The language of halting Turing machines, encoded in some suitable way;

• The language of true mathematical statements in English.

Note that the alphabet we choose doesn’t usually make much difference, and indeed in future we’ll
assume that the alphabet used is {0, 1}.

Let M be a Turing machine. We say that L is decided by M if:

• On all input words x ∈ L, M halts in the Accept state;

• On all input words x /∈ L, M halts in the Reject state.

Decision problems and languages are essentially interchangeable, and we will do so throughout
these lectures.

2 Time complexity

Most computational tasks that we want to perform require effort that grows with the input size,
and one of the most important resources that we can expend is time.

Imagine that M is a Turing machine that decides some language L. The time complexity or running
time of M is the function f : N → N such that f(n) is the largest number of steps that M makes
on any input of size n. This is a worst case notion of complexity.

1http://www.cs.bris.ac.uk/~montanar/
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We would like to understand the intrinsic time complexity of a problem – the amount of time
required to solve it – while abstracting away the details of the hardware we use to solve it, and
so on. To understand the “true” complexity of solving a problem while avoiding “unimportant”
details, an important tool is asymptotic (or big-O) notation, which is a tool for understanding the
rate of growth of a function. This notation works as follows.

Let f, g : N → R be two functions from the natural numbers to the reals. We say that f(n) =
O(g(n)) if there exists a positive real number c and integer n0 such that:

for all n ≥ n0, f(n) ≤ c g(n).

For example, consider f(n) = 100n3 + 3n2 + 7. It’s easy to convince yourself that f(n) = O(n3).
In fact, any polynomial of degree k is O(nk), and in future we say “f(n) = poly(n)” as shorthand
for “f(n) = O(nk) for some k”. On the other hand, consider g(n) = 1.0001n. Then one can show
that g(n) is not O(nk) for any constant k.

3 Polynomial and exponential time

We now come to a key distinction in computational complexity: between polynomial and exponen-
tial time.

Definition 1. Define the following classes:

• TIME(f(n)) is the class of all languages decided by a Turing machine running in time O(f(n)).

• P is the class of languages that are decided by a Turing machine in polynomial time, i.e.
P =

⋃
k TIME(nk).

• EXP is the class of languages that are decided by a Turing machine in exponential time, i.e.
EXP =

⋃
k TIME(2nk

).

Mathematically, P and EXP are sets of languages, and it should be clear that P ⊆ EXP (in fact, one
can prove that this inclusion is strict, i.e. there are problems which can be solved in exponential
time that cannot be solved in polynomial time). There is an even stronger result, called the time
hierarchy theorem, which implies that TIME(nk) ⊂ TIME(nk+1) for any k ≥ 0; however, we won’t
prove this here.

We think of P as the class of languages which we have a hope of deciding with an “efficient”
algorithm, or in other words the class of problems we might be able to solve in practice. This seems
plausible for problems where we have an algorithm whose running time is O(n), but what about
a problem where the best algorithm we have runs in time O(n100)? All we can say is that such
problems don’t seem to occur very often; usually, when we can prove that a problem is in P, it
turns out that the exponent in the polynomial isn’t too big.

Here are some examples of problems in P:

• Circuit Value: given a circuit C, what is the first bit of the output of C on input x?

• Primes: given an integer m, is m a prime number?
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• Linear Programming: find z = maxx(cT x) subject to the constraint Ax ≤ b.

Strictly speaking, the last of these is a functional, rather than decision problem, but it should be
easy to see how it can be modified to make it a decision problem. Note that the second and third
of these were only proven to be in P quite recently (2002 and 1979, respectively). So it’s often not
obvious a priori whether a problem is in P, i.e. whether it has a polynomial-time algorithm.

4 Reductions between languages

We would like to formalise the notion of one decision problem being at least as hard to solve as
another. In particular, we would like to understand when a polynomial-time solution to problem
A implies a polynomial-time solution to problem B.

• We say that f : Σ∗ → Σ∗ is a polynomial-time computable function if there is a polynomial
time Turing machine that halts with f(x) on its tape when started with input x on the tape.

• We say that the language A is polynomial time reducible to B if there is a polynomial-
time computable function f such that w ∈ A if and only if f(w) ∈ B. Here f is called a
polynomial-time reduction from A to B and we write A ≤P B.

It’s clear from these definitions that, if A ≤P B and B ∈ P, A ∈ P. A very nice aspect of
polynomial-time reductions is that they compose: if A ≤P B, and B ≤P C, then A ≤P C. This is a
major motivation for choosing P as our class of “reasonable” problems.

5 Further reading

There’s a vast amount of information about computational complexity on the Internet and else-
where. These lectures are mostly based on the lecture notes for the course “Computational Com-
plexity Theory” by Richard Jozsa2, which are highly recommended for a gentle introduction. The
following books are also good background reading.

• Introduction to the Theory of Computation, Michael Sipser. An undergraduate-level book;
part 3 is about complexity theory.

• Computers and Intractability: A Guide to the Theory of NP-Completeness, Michael R. Garey
and David S. Johnson. A classic of the field containing descriptions of many interesting
problems.

• Computational Complexity, Christos H. Papadimitriou. Dense but mathematically precise
and full of interesting details.

• Computational Complexity: A Modern Approach, Sanjeev Arora and Boaz Barak. A very
recent and comprehensive text containing many important developments in the field.

The lecture next week on hardness of approximation is based on the latter two books.
2http://www.cs.bris.ac.uk/Teaching/Resources/COMS30126/
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