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1 Lower bounds on quantum search

We have seen that Grover’s algorithm finds a marked item in an unstructured database of n items
using only O(

√
n) queries. This is already a remarkable result. However, it would be more remark-

able still if there existed a quantum algorithm which could search such a database significantly
more quickly – e.g. using O(log n) queries. It is a significant understatement to say that such
an algorithm would have many applications; indeed, it would revolutionise computer science by
allowing any problem whose solution can be verified efficiently to be solved efficiently, or in terms
of complexity classes proving that NP ⊆ BQP.

Unfortunately, we will now show that such an algorithm cannot exist, and indeed that Grover’s
algorithm is optimal up to constant factors.

1.1 A note on big-O notation

In order for clarity in our discussion of lower and upper bounds, it will be helpful to formalise
some standard notation relating to asymptotic complexity. First, we will say that f(n) = O(g(n))
if there exist real c > 0 and integer n0 ≥ 0 such that for all n ≥ n0, f(n) ≤ c g(n). Conversely,
f(n) = Ω(g(n)) if there exist real c > 0 and integer n0 ≥ 0 such that for all n ≥ n0, f(n) ≥ c g(n).
Clearly, f(n) = O(g(n)) if and only if g(n) = Ω(f(n)). Finally, when we say “bounded error”
below, we mean with error probability upper bounded by some constant below 1/2.

1.2 The query complexity model

We will prove a lower bound on the number of queries required to solve the unstructured search
problem for a unique marked item in a database of N items (as discussed in Section 8.1 of the
previous notes). Recall that in this problem we have a function f : {0, 1}n → {0, 1} (where
N = 2n) such that f takes the value 1 on precisely one input x0. We are given access to f via a
unitary operator Uf defined by

Uf |x〉|y〉 = |x〉|y ⊕ f(x)〉

and would like to determine x0 using the smallest possible number of uses of (“queries to”) Uf .

Consider an arbitrary quantum algorithm A which completes this task. Such an algorithm can
be expressed as a quantum circuit operating on three registers: an n-qubit input register, a 1-qubit
output register and a workspace register of m qubits, where m is arbitrary. A computational basis
state of such a system can therefore be written as |x〉|y〉|w〉 for x ∈ {0, 1}n, y ∈ {0, 1}, w ∈ {0, 1}m.
Note that Grover’s algorithm does not in fact use any additional workspace (i.e. m = 0), but if we
want to put a lower bound on more general algorithms we should allow the use of such a workspace.

The operation of a completely general quantum query algorithm can be expressed as follows.
Starting in the state |0〉|0〉|0〉, apply a sequence of arbitrary but fixed unitary operations V1, V2, . . .
which do not depend on f , interspersed with oracle operations Uf (which depend on f and operate
on the input and output registers), followed by a final measurement, after which the algorithm
outputs x0. Without loss of generality, we assume that the final step of the algorithm is to measure
n qubits of the workspace and to output the measurement result.

The circuit diagram in Figure 1 illustrates such a quantum query algorithm.
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Figure 1: General quantum query algorithm operating on input register |x〉, output register |y〉,
and workspace |w〉.

1.3 Quantum search lower bound

In order to prove our lower bound, we will modify the unstructured search problem slightly, by also
allowing the possibility for no items to be marked. That is, we will consider the following problem.

Unstructured search (modified)
Input: a black box for a boolean function f : {0, 1}n → {0, 1}
Promise: there is either a unique “marked” x such that f(x) = 1, or f(x) = 0 for all x.
Problem: find this special x, or output that no such x exists.

The complexity of solving the modified problem is very similar to that of solving the original
problem; indeed, it is an easy exercise to show that any (classical or quantum) algorithm for the
original problem can be converted into an algorithm for the modified problem at the cost of one
additional query.

We will now prove the following lower bound on quantum search.

Theorem 1. Let A be a quantum algorithm which solves the (modified) unstructured search problem
using T queries with failure probability ε < 1/2. Then

T ≥
(

1

2
− ε
)√

N.

So, when ε is any constant strictly less than 1/2, T = Ω(
√
N).

The intuition behind the lower bound is as follows. For any x, in order to distinguish the case
where the marked element is x from the case where there is no marked element, the quantum
algorithm must put significant “weight” on queries to x during the algorithm. If the position of
the marked element is picked uniformly at random, the algorithm must put significant weight on
all N positions. This is only possible if the number of queries is Ω(

√
N). The proof will use the

following lemma, which we prove afterwards.

Lemma 2. Let |ψ1〉 and |ψ2〉 be quantum states such that ‖|ψ1〉−|ψ2〉‖ ≤ ε. Given a quantum state
|ψ〉 promised to be either |ψ1〉 or |ψ2〉, no measurement of |ψ〉 in the computational basis followed
by arbitrary post-processing can determine which is the case with worst-case error probability lower
than (1− ε)/2.

Proof of Theorem 1. Assume the marked element is x, so f(x) = 1. Write Ox for the matrix
produced by applying H to the output register, then applying Uf to the input and output registers,
then applying H to the output register. As we only count the number of queries made to the oracle
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Uf in the query complexity model and we are allowed to apply arbitrary fixed unitary operators
before and after oracle calls, counting queries to Ox is the same as counting queries to Uf . We
illustrate this with the following circuit diagram.

|x〉
Ox Uf

|y〉 ≡ H H

|w〉
It can readily be verified that

Ox|z〉|y〉|w〉 = (−1)yδxz |z〉|y〉|w〉,

where δxz = 1 if x = z, and δxz = 0 otherwise, so this application of H on the output register
diagonalises Uf . Fix a quantum query algorithm that makes T queries to the input and let the
state of the system after t ≤ T queries, given that f(x) = 1, be

|ψx,t〉 = OxVtOxVt−1 . . . OxV1|0〉.

We will compare the states {|ψx,t〉} with the result of applying the Vt operators without the oracle
queries, or equivalently when there is no marked item (so Uf and Ox are both equal to the identity
matrix). Define the state

|φt〉 = VtVt−1 . . . V1|0〉.

We would like to upper bound the quantity ‖|ψx,T 〉 − |φT 〉‖. To do so, we introduce a “deviation”
vector |Dx,t〉 which, intuitively, measures the effect of an oracle call at time t:

|Dx,t〉 = Ox|φt〉 − |φt〉.

In terms of these deviation vectors, we have

|ψx,1〉 = |φ1〉+ |Dx,1〉
|ψx,2〉 = |φ2〉+ |Dx,2〉+OxV2|Dx,1〉

...

|ψx,T 〉 = |φT 〉+ |Dx,T 〉+OxVT |Dx,T−1〉+ · · ·+OxVT . . . OxV2|Dx,1〉.

Thus, by the triangle inequality,

‖|ψx,T 〉 − |φT 〉‖ = ‖|Dx,T 〉+OxVT |Dx,T−1〉+ · · ·+OxVT . . . OxV2|Dx,1〉‖

≤
T∑
t=1

‖|Dx,t〉‖ =
T∑
t=1

‖(Ox − I)|φt〉‖.

On the other hand, as we are assuming the algorithm fails with probability at most ε in the worst
case, by Lemma 2 we have

‖VT+1|ψx,T 〉 − VT+1|φT 〉‖ = ‖|ψx,T 〉 − |φT 〉‖ ≥ 1− 2ε,

because the algorithm must be able to distinguish between x being the marked item, and there
being no marked items. Combining these two inequalities and squaring both sides, we obtain

(1− 2ε)2 ≤

(
T∑
t=1

‖(Ox − I)|φt〉‖

)2

≤ T
T∑
t=1

‖(Ox − I)|φt〉‖2,
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valid for any ε ≤ 1/2, where the second inequality is Cauchy-Schwarz. This inequality holds for all
x. We can therefore take the average of the right-hand side over x to find

(1− 2ε)2 ≤ T

N

T∑
t=1

∑
x∈{0,1}n

‖(Ox − I)|φt〉‖2 ≤ T 2 max
|φ〉

1

N

∑
x∈{0,1}n

‖(Ox − I)|φ〉‖2.

Now observe that Ox − I performs the following map:

(Ox − I)|z〉|y〉|w〉 = −2yδxz|z〉|y〉|w〉.

Thus

(1− 2ε)2 ≤ 4T 2 max
|φ〉

1

N

∑
x∈{0,1}n

∑
w

|〈φ|x〉|1〉|w〉|2 =
4T 2

N
.

We therefore have the inequality

T ≥
(

1

2
− ε
)√

N,

which completes the proof.

1.4 Proof of Lemma 2

We still need to prove this technical lemma, which we restate for clarity.

Lemma. Let |ψ1〉 and |ψ2〉 be quantum states such that ‖|ψ1〉 − |ψ2〉‖ ≤ ε. Given a quantum state
|ψ〉 promised to be either |ψ1〉 or |ψ2〉, no measurement of |ψ〉 in the computational basis followed
by arbitrary post-processing can determine which is the case with worst-case error probability lower
than (1− ε)/2.

Proof. We will show that the probability distributions p1, p2 over the measurement outcomes
obtained for |ψ1〉, |ψ2〉 satisfy

1

2

∑
x

|p1(x)− p2(x)| ≤ ε.

This will imply the lemma, because no strategy for choosing between p1 and p2, given a single sample
from an unknown distribution which might be either, can achieve a worst-case error probability
smaller than

1

2
− 1

4

∑
x

|p1(x)− p2(x)|.

This is a standard result from probability theory; to see it directly, observe that the average
error (over the choice of p1, p2) of any randomised or deterministic strategy which infers that the
distribution was p1 with probability s(x), given outcome x, is

1

2

(∑
x

p1(x)(1− s(x)) +
∑
x

p2(x)s(x)

)
=

1

2
− 1

2

∑
x

s(x)(p1(x)− p2(x))

≥ 1

2
− 1

2

∑
x,p1(x)≥p2(x)

(p1(x)− p2(x))

=
1

2
− 1

4

∑
x

|p1(x)− p2(x)|,
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so the worst-case error probability can only be higher. Now, writing ax = |〈x|ψ1〉|, bx = |〈x|ψ2〉|,
we have ∑

x

|p1(x)− p2(x)| =
∑
x

|a2x − b2x| =
∑
x

|ax − bx|(ax + bx)

≤
√∑

x

(ax − bx)2
√∑

x

(ax + bx)2

≤
√∑

x

|〈x|ψ1〉 − 〈x|ψ2〉|2

√∑
x

a2x +

√∑
x

b2x


= 2‖|ψ1〉 − |ψ2〉‖,

where the first inequality is Cauchy-Schwarz, the second inequality combines the reverse triangle
inequality ||x| − |y|| ≤ |x − y| and the triangle inequality for the Euclidean norm, and the final
equality uses the fact that |ψ1〉 and |ψ2〉 are unit vectors.

1.5 Further reading

The lower bound on unstructured quantum search was originally proven by Bennett et al. [3]
– notably before Grover’s quantum search algorithm was found. The lower bound can in fact
be improved to show that Grover’s algorithm is exactly optimal and its performance cannot be
improved by even one query [19]. However, this only holds in the worst-case setting; if the goal is
to minimise the average number of queries to the database, it turns out that one can do better,
but only by a constant factor. There is a significant generalisation of the above lower bound to
a general technique for quantum lower bounds known as the adversary method; for an accessible
review, see [10].

2 General lower bounds on quantum query complexity

We now turn to a different technique for lower bounding quantum query complexity known as the
polynomial method, which has the advantage of both being fairly straightforward to apply and
having interesting consequences.

In particular, we will work towards the following result.

Theorem 3. Let f : {0, 1}n → {0, 1} be a total boolean function computed with bounded error by a
quantum algorithm using T queries to the input. Then there is a deterministic classical algorithm
which computes f with certainty using O(T 6) queries to the input.

A total function is simply one which has no promise on the input. It is important to note
that in this theorem we have changed terminology somewhat from our previous query complexity
language. Previously, we thought of problems in the quantum query complexity model as follows:
given oracle access Uf to a function f , with some promise on f , output some property of f (e.g.
whether f is constant or balanced) using the minimum number of queries to Uf . Now we consider
the following setting: Given oracle access to a bit-string x via an oracle Ux which performs the map

Ux|i〉|y〉 = |i〉|y ⊕ xi〉,

6



output g(x), for some known function g. This does not change the model, but is merely a change
of language. Observe that there are indeed some total functions which require fewer quantum than
classical queries to be computed. For example, the OR function on n bits is defined by ORn(x) = 1
if and only if x 6= 0n. ORn can be computed with bounded error by Grover’s algorithm for
unstructured search with an unknown number of good items, using only O(

√
n) quantum queries

to the input. Other examples of functions we will consider below are the AND and PARITY
functions on n bits defined by ANDn = x1 ∧ x2 ∧ · · · ∧ xn (i.e. ANDn(x) = 1 if and only if x = 1n)
and PARITYn = x1 ⊕ x2 · · · ⊕ xn (i.e. the sum of the bits of x modulo 2). These functions are all
symmetric: they depend only on the Hamming weight |x|, i.e. the number of ones in x.

Note that Theorem 3 does not contradict the exponential separations between quantum and
classical algorithms which you have seen for period-finding (Shor’s algorithm) and Simon’s problem.
This is because these functions are partial, or in other words have a promise on the input. This
result thus highlights the importance of promises in quantum algorithms.

2.1 The polynomial method

The polynomial method is (unsurprisingly) based on understanding polynomials. Any function
f : {0, 1}n → R can be written as a polynomial in n variables x1, . . . , xn. As each variable xi only
takes values 0 or 1, we never need to raise a variable to a power greater than 1. Such polynomials
are said to be multilinear. Any function f : {0, 1}n → R in fact has a unique representation as a
multilinear polynomial. The degree deg(f) is the largest number of variables in any term in the
polynomial representation of f .

For example, the AND function f(x1, x2) = x1∧x2 has polynomial representation x1x2, whereas
the PARITY function f(x1, x2) = x1 ⊕ x2 has polynomial representation x1 + x2 − 2x1x2. Both of
these functions have degree 2.

The first step to proving Theorem 3 is the following important observation.

Lemma 4. Let A be a quantum query algorithm which makes T queries to the input. Let p(x) be
the probability that A outputs 1 on input x. Then p is a polynomial of degree at most 2T in real
variables x1, . . . , xn.

Proof. The proof is by induction. Let the state of the computer just before the (t + 1)’st query,
when the input is x, be ∣∣ψtx〉 =

∑
i,y,w

αtiyw(x)|i〉|y〉|w〉.

We will show by induction that, for any i, y, w, t, the function αtiyw(x) is a (complex-valued) poly-
nomial of degree at most t. First, when t = 0, αtiyw(x) is constant with respect to x. A consists of
alternating between oracle calls and unitary operators which do not depend on the input x. The
latter operators cannot increase maxi,y,w deg(αtiyw). What about the oracle calls? As discussed in
Section 1.3 of these notes, Ux can be diagonalised by the application of Hadamard gates on the
output qubit to give a diagonal matrix Ox satisfying

Ox|i〉|y〉|w〉 = (−1)yxi |i〉|y〉|w〉 = (1− 2yxi)|i〉|y〉|w〉.

An application of Ox maps αtiyw(x) 7→ (1− 2yxi)α
t
iyw(x), which is a polynomial of degree at most

t + 1. We can assume without loss of generality that the last step of the algorithm is to measure
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the output qubit and return the measurement result. When this qubit is measured after T queries,
the probability that the output is 1 is ∑

i,w

|αTi1w(x)|2.

For each i and w, the real and imaginary parts of αTi1w are polynomials of degree at most T . Thus
the above sum is a polynomial of degree at most 2T .

Lemma 4 allows us to go from lower bounds on the degree of polynomials (which are well-studied)
to lower bounds on quantum query complexity. In the case of exact algorithms, p(x) = f(x) for
all x, so we immediately see that any quantum algorithm computing a boolean function f exactly
using T queries must satisfy T ≥ 1

2 deg(f). This allows us to prove strong lower bounds easily for
certain functions.

Fact 5. deg(ANDn) = deg(ORn) = deg(PARITYn) = n. Thus, any quantum algorithm computing
any of these functions exactly must make at least n/2 queries to the input.

The lower bound on PARITY is tight, as you have seen that the parity of 2 bits can be computed
exactly using only one quantum query using the Deutsch-Jozsa algorithm, which allows PARITYn

to be computed using dn/2e quantum queries. The bounds on AND and OR can actually be
improved to show that any quantum algorithm computing either of these functions exactly must
make precisely n queries to the input, and hence can achieve no speed-up at all over classical
algorithms.

We would also like to prove lower bounds on quantum algorithms which do not necessarily
succeed with certainty. We make the following definition.

Definition 1. Let f : {0, 1}n → {0, 1} be a boolean function. The ε-approximate degree d̃egε(f)
is defined as the minimum of deg(f̃) over all functions f̃ : {0, 1}n → R such that |f(x)− f̃(x)| ≤ ε
for all x ∈ {0, 1}n. The approximate degree of f is defined as d̃eg(f) = d̃eg1/3(f).

Corollary 6. Let f : {0, 1}n → {0, 1} be a total boolean function computed with error at most 1/3

on every input by a quantum algorithm using T queries. Then T ≥ 1
2 d̃eg(f).

Proof. By Lemma 4, any quantum algorithm that makes T queries and achieves worst-case failure
probability at most 1/3 gives a polynomial of degree at most 2T that approximates f to within 1/3

on every input. The corollary follows from the definition of d̃eg(f).

Theorem 3 will now follow from a classical upper bound in terms of d̃eg(f). We will show that,

if d̃eg(f) = d, there is a classical algorithm that makes O(d6) queries to the input and computes f
with certainty.

2.2 Block sensitivity and approximate degree

The bound required to prove Theorem 3 is obtained by chaining together several complexity mea-
sures of boolean functions. The first such complexity measure is block sensitivity.

Definition 2. The block sensitivity bsx(f) of f on x is the maximum number b such that there are
disjoint sets B1, . . . , Bb for which f(x) 6= f(xBi) for all 1 ≤ i ≤ b, where xB is the bit string defined
to be equal to x with the bits in B flipped. The block sensitivity of f is bs(f) = maxx bsx(f).
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It turns out that functions with high block sensitivity have high approximate degree.

Lemma 7. Let f : {0, 1}n → {0, 1} be a boolean function. Then bs(f) ≤ 6 d̃eg(f)2.

Lemma 7 is an easy corollary of the following result.

Lemma 8. Let f : {0, 1}n → {0, 1} be a boolean function such that f(0n) = 0 and f(x) = 1 for all

x such that |x| = 1. Then d̃eg(f) ≥
√
n/6.

The proof of Lemma 8 is based on the notion of symmetrisation, which is a way of obtaining
a univariate polynomial from a multivariate polynomial. For arbitrary f : {0, 1}n → R, the
symmetrisation of f is the function fsym defined by

f sym(x) =
1

n!

∑
σ∈Sn

f(σ(x)),

where Sn is the symmetric group on n elements and σ(x) is the bit-string obtained by permuting
the bits of x according to the permutation σ.

Lemma 9. For any multilinear polynomial f : Rn → R, there exists a univariate polynomial
p : R→ R such that f sym(x) = p(|x|). Further, deg(p) = deg(fsym) ≤ deg(f).

Proof. Set d = deg(f). As f is a multilinear polynomial, it can be written as

f(x) =
∑

S⊆{1,...,n},|S|≤d

αS
∏
i∈S

xi

for some real coefficients {αS}. Thus

fsym(x) =
1

n!

∑
S⊆{1,...,n},|S|≤d

αS
∑
σ∈Sn

∏
i∈S

σ(x)i =
∑

S⊆{1,...,n},|S|≤d

αS

(|x|
|S|
)(

n
|S|
) .

The claim follows from observing that(
|x|
|S|

)
=
|x|(|x| − 1) . . . (|x| − |S|+ 1)

|S|!

is a degree |S| polynomial in |x|, and that |S| ≤ deg(f).

We will also need a result from approximation theory, which we state without proof (for details,
see [16] or [5]).

Lemma 10. Fix an integer n and real numbers b1, b2, c, and let p : R → R be a univariate
polynomial which satisfies these two properties: (a) for every integer 0 ≤ i ≤ n, b1 ≤ p(i) ≤ b2 for
some constants b1, b2; and (b) for some real 0 ≤ x ≤ n, the derivative of p satisfies |p′(x)| ≥ c.
Then deg(p) ≥

√
cn/(c+ b1 − b2).

We are now ready to prove Lemma 8.

Proof of Lemma 8. Let f̃ be a function approximating f to within an additive error of 1/3 on every
input, and let p be the univariate polynomial obtained by symmetrising f̃ . Then:
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1. deg(p) ≤ deg(f̃) (by Lemma 9);

2. For every integer 0 ≤ i ≤ n, −1/3 ≤ p(i) ≤ 4/3 (as f is a boolean function);

3. p(0) ≤ 1/3 (as f(0n) = 0);

4. p(1) ≥ 2/3 (as f(x) = 1 for all x such that |x| = 1).

These last two properties imply that, for some real 0 ≤ z ≤ 1, |p′(z)| ≥ 1/3. So, by Lemma 10,
deg(p) ≥

√
n/6 and hence deg(f̃) ≥

√
n/6.

2.3 Certificate complexity and block sensitivity

The other complexity measure which we will need is certificate complexity. Informally, this measures
the number of bits of x we need in order to know the value of f(x).

Definition 3. Let S be a subset of {1, . . . , n}, and let C : S → {0, 1} be an assignment of values
to the variables in S. The size of C is |S|. We say that x is consistent with C if xi = C(i) for all
i ∈ S. A b-certificate for f is an assignment C such that f(x) = b whenever x is consistent with C.

The certificate complexity of f on x, Cx(f), is the size of a smallest f(x)-certificate which is
consistent with x. The certificate complexity of f is C(f) = maxxCx(f).

For example, the assignment x1 = 1 is a 1-certificate for the OR function on n bits. However,
there is no 0-certificate for this function with size strictly lower than n. Certificate complexity and
block sensitivity are related as follows.

Lemma 11. For any function f : {0, 1}n → {0, 1}, C(f) ≤ bs(f)2.

Proof. For an arbitrary input x ∈ {0, 1}n, let B1, . . . , Bb be minimal disjoint sets of variables
achieving b = bsx(f). We will show that the certificate C :

⋃
iBi → {0, 1} which sets each of the

variables in
⋃
iBi according to x is a small enough f(x)-certificate.

Towards a contradiction, assume that C is not a certificate. Then there is an input y such
that y is consistent with C, but f(y) 6= f(x). Define Bb+1 as the set of bits i such that xi 6= yi.
Then Bb+1 is disjoint from B1, . . . , Bb, and yet flipping any of the bits of x in Bb+1 flips f(x),
contradicting b = bsx(f). Thus C is indeed a f(x)-certificate.

We finally show that |C| ≤ bs(f)2, which will follow from showing that |Bi| ≤ bs(f) for all
i. Consider the input zi which is equal to x with the bits in Bi flipped. Now flipping any of zi’s
bits in the set Bi must flip the value of f from f(zi) to f(x), or Bi would not be minimal, so
bs(f) ≥ bszi(f) ≥ |Bi|.

The final ingredient we will need to prove Theorem 3 is a classical upper bound in terms of
certificate complexity and block sensitivity.

Lemma 12. For any function f : {0, 1}n → {0, 1}, there exists a classical algorithm which computes
f(x), for any x, using at most C(f) bs(f) queries.

Proof. We give an explicit algorithm achieving the required number of queries. For a certificate C
(or input y), we say that C (or y) is consistent at a particular point of the algorithm’s execution
if it agrees with the values of all variables queried by the algorithm up to that point. Then the
algorithm is as follows.
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1. Repeat at most bs(f) times:

(a) Attempt to pick a consistent 1-certificate C.

(b) If there is no such C, stop and return 0. Otherwise, query the variables in C which are
unknown.

(c) If the queried values agree with C then stop and return 1.

2. Pick a consistent input y and return f(y).

It is clear that the algorithm uses at most C(f) bs(f) queries. We now show that it is always correct.
If it returns an answer early (in step 1), it is either because there are no consistent 1-certificates,
so it returns 0 as required, or if has found a consistent 1-certificate, so it returns 1 as required.

We will show that, if it does not return an answer in step 1, f must be constant on all remaining
consistent inputs y. Assume towards a contradiction that f(y) = 0, f(z) = 1 for some consistent
y, z. Let the bs(f) 1-certificates the algorithm has queried be C1, . . . , Cbs(f). As f(z) = 1, z
contains a consistent 1-certificate Cbs(f)+1. For each i, define Bi as the set of variables on which y
and Ci disagree. Bi is non-empty as otherwise the algorithm would have returned 1 in step 1.

Now it holds that f(yBi) 6= f(y), because yBi agrees with Ci and hence f(yBi) = 1. For any
i such that 1 ≤ i ≤ bs(f), if variable k occurs in Bi, then xk = yk 6= Ci(k). If j > i, then it
cannot hold that xk = yk 6= Cj(k), because Cj was consistent with all variables previously queried,
including xk. Thus k /∈ Bj , implying that the sets Bi are disjoint. This implies that f is sensitive
to bs(f) + 1 disjoint sets of variables on y, which is a contradiction and implies that f must be
constant on all consistent y in step 2, so the algorithm returns the right answer.

We are finally ready to combine all these ingredients to prove Theorem 3, which we restate for
clarity.

Theorem. Let f : {0, 1}n → {0, 1} be a total boolean function computed with bounded error by a
quantum algorithm using T queries to the input. Then there is a deterministic classical algorithm
which computes f with certainty using O(T 6) queries to the input.

Proof of Theorem 3. By Lemma 12, for any f there is a classical algorithm which computes f with
certainty using at most

C(f) bs(f) ≤ bs(f)3 ≤ d̃eg(f)6

queries to the input, where the first inequality is Lemma 11 and the second is Lemma 7. By
Corollary 6, if there is a bounded-error quantum algorithm for f making T queries, d̃eg(f) = Ω(T ).
This completes the proof of the theorem.

The alert reader may have noticed that Theorem 3 can actually be proven without the use
of the polynomial method, as Theorem 1 can be used to show that any quantum algorithm that
computes a boolean function f with bounded error must make Ω(

√
bs(f)) queries to the input.

However, there are other problems for which the polynomial method gives better lower bounds
than any other known technique.

2.4 Perspective on lower bounds on quantum algorithms

The study of lower bounds can be somewhat dispiriting, as fundamentally it is about not what
we can do, but what we cannot. However, it is of importance for the following reasons. First,
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lower bounds give us a guide to what we can hope to achieve with quantum computers. Finding
new quantum algorithms is a daunting task, and any hints as to what we can hope to achieve are
helpful. Second, and perhaps more importantly, as we believe the model of quantum computation
encapsulates all computation that can be performed physically, lower bounds are nothing less than
fundamental statements about our physical universe.

2.5 Further reading and open problems

There is an excellent survey on complexity measures of boolean functions, including the bounds
on quantum query complexity discussed above, by Buhrman and de Wolf [5]. The polynomial
method was introduced by Beals et al [2], following prior work by Nisan and Szegedy [16] in the
classical literature. Høyer and Špalek have since written a good general survey on quantum query
complexity, including the far-reaching generalisation of the lower bound on unstructured search
known as the adversary method [10].

There are still many open and accessible problems in the study of quantum lower bounds.
In what follows, let D(f) denote the minimum number of queries to the input required for any
classical algorithm that computes f exactly. Also let QE(f) and Q2(f) denote the minimum
number of queries required for any quantum algorithm that computes f exactly and with bounded
error, respectively.

• Theorem 3 states that D(f) = O(Q2(f)6). It is conjectured that this bound can be improved
to D(f) = O(Q2(f)2), which would be tight by Grover’s algorithm, but any improvement
would be interesting.

• No function f is known such that D(f) > 2QE(f). On the other hand, the tightest known
relationship between these two complexity measures is cubic: D(f) = O(QE(f)3), by a result
of Midrijānis [14].

• It is conjectured that the general lower bound Q2(f) = Ω(logn) holds for any boolean function
f which depends on n input variables, for some universal constant C. A lower bound Q2(f) =
Ω(
√

log n) is already known, which is based on block sensitivity arguments.

3 Phase estimation

We now discuss an important primitive used in quantum algorithms called phase estimation, which
provides a different and unifying perspective on some of the quantum algorithms (factoring, search)
which you have already seen. Phase estimation is once again based on the quantum Fourier trans-
form (QFT) over Z2n . Recall that this is the unitary operator “QFT” that satisfies

QFT|x〉 =

2n−1∑
y=0

eiπxy/2
n−1 |y〉.

Imagine we are given a unitary operator U . U may either be written down as a quantum circuit,
or we may be given access to a black box which allows us to apply a controlled-U j operation for
integer values of j. We are also given a state |ψ〉 which is an eigenvector of U : U |ψ〉 = e2πiφ|ψ〉 for
some real φ such that 0 ≤ φ < 1. We would like to determine φ to n bits of precision, for some
arbitrary n.
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To do so, we prepend an n qubit register to |ψ〉, initially in the state |0〉, and create the state

1√
2n

2n−1∑
x=0

|x〉|ψ〉

by applying Hadamards to each qubit in the first register. We then apply the unitary operator

U ′ =

2n−1∑
x=0

|x〉〈x| ⊗ Ux.

This operator can be described as: if the first register contains x, apply U x times to the second
register. We are left with the state

1√
2n

2n−1∑
x=0

e2πiφx|x〉|ψ〉;

note that the second register is left unchanged by this operation. We now apply the operator
QFT−1 to the first register and then measure it, receiving outcome x (say). We output the binary
fraction

0.x1x2 . . . xn =
x1
2

+
x2
4

+ · · ·+ xn
2n

as our guess for φ. The following is an explicit circuit for the above algorithm, up to the measure-
ment of the first register.

|0〉 H . . . •

QFT−1
...

|0〉 H • . . .

|0〉 H • . . .

|ψ〉 U20 U21 . . . U2n−1

Why does this algorithm work? When we perform the final measurement, the probability of getting
the outcome x is

1

2n

∣∣∣∣∣∣
2n−1∑
y=0

e2πiφy−iπxy/2
n−1

∣∣∣∣∣∣
2

=
1

2n

∣∣∣∣∣∣
2n−1∑
y=0

e2πiy(φ−x/2
n)

∣∣∣∣∣∣
2

.

First imagine that the binary expansion of φ is at most n bits long, or in other words φ = z/2n for
some 0 ≤ z ≤ 2n − 1. In this case we have

1

2n

∣∣∣∣∣∣
2n−1∑
y=0

e2πiy(φ−x/2
n)

∣∣∣∣∣∣
2

=
1

2n

∣∣∣∣∣∣
2n−1∑
y=0

eπiy(z−x)/2
n−1

∣∣∣∣∣∣
2

= δxz

by the unitarity of the QFT, so the measurement outcome is guaranteed to be z, implying that the
algorithm outputs φ with certainty. If the binary expansion of φ is longer than n bits, we now show
that we still get the best possible answer with constant probability, and indeed are very likely to
get an answer close to φ.

13



Theorem 13. The probability that the above algorithm outputs the real number with n binary digits
which is closest to φ is at least 4/π2. Further, the probability that the algorithm outputs θ such that
|θ − φ| ≥ ε is at most O(1/(2nε)).

Proof. If the binary expansion of φ has n binary digits or fewer, we are done by the argument
above. So, assuming it does not, let φ̃ be the closest approximation to φ that has n binary digits,
and write φ̃ = a/2n for some integer 0 ≤ a ≤ 2n − 1. For any z, define δ(z) := φ− z/2n and note
that 0 < |δ(z)| ≤ 1/2n+1 for all z. For any φ, the probability of getting outcome z from the final
measurement is

1

22n

∣∣∣∣∣∣
2n−1∑
y=0

e2πiy(φ−z/2
n)

∣∣∣∣∣∣
2

=
1

22n

∣∣∣∣∣∣
2n−1∑
y=0

e2πiyδ(z)

∣∣∣∣∣∣
2

=
1

22n

∣∣∣∣∣1− e2
n+1πiδ(z)

1− e2πiδ(z)

∣∣∣∣∣
2

, (1)

where we evaluate the sum using the formula for a geometric series. This quantity should be
familiar from the proof of correctness of the periodicity determination algorithm, and indeed the
first part of this proof is the same as the proof of Theorem 4 in Section 6.2; nevertheless, we repeat
it for convenience.

We first lower bound this expression for z = a to prove the first part of the lemma; for con-
ciseness, write δ := δ(a) = φ − φ̃. As |δ| ≤ 1/2n+1, we have 2n+1πδ ≤ π. We now claim that (a)
|1− e2n+1πiδ| ≥ 2n+2δ; (b) |1− e2πiδ| ≤ 2πδ. Together, these claims imply that

1

22n

∣∣∣∣∣1− e2
n+1πiδ

1− e2πiδ

∣∣∣∣∣
2

≥ 1

22n

(
2n+2δ

2πδ

)2

≥ 4

π2
.

Claims (a) and (b) are proven by geometric arguments. For part (a), set α = 2n+1πδ and observe
that |1 − eiα| is the length of a chord between 1 and eiα in the complex plane. As α ≤ π,
|1− eiα| = 2 sin(α/2) ≥ (2/π)α. For part (b), simply observe that the length of the chord between
two points is upper bounded by the length of the minor arc between them.

In order to prove the second part of the theorem, we now find an upper bound on expression
(1). First, it is clear that |1− e2n+1πiδ(z)| ≤ 2 always. For the denominator, by the same argument
to part (a) above we have |1− e2πiδ(z)| ≥ 4δ(z) and hence, for all z,

Pr[get outcome z] ≤ 1

22n

(
2

4δ(z)

)2

=
1

22n+2δ(z)2
.

We now sum this expression over all z such that |δ(z)| ≥ ε. The sum is symmetric about δ(z) = 0,
and as z is an integer, the terms in this sum corresponding to δ(z) > 0 are δ0, δ0 + 1/2n, . . . , for
some δ0 ≥ ε. The sum will be maximised when δ0 = ε, when we obtain

Pr[get outcome z with |δ(z)| ≥ ε] ≤ 1

22n+2

∞∑
k=0

1

(ε+ k/2n)2
≤ 1

4

∫ ∞
0

1

(2nε+ k)2
dk

=
1

4

∫ ∞
2nε

1

k2
dk = O

(
1

2nε

)
.

We observe the following points regarding the behaviour of this algorithm.
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• What happens if we do not know an eigenvector of U? If we input an arbitrary state |ϕ〉
to the phase estimation algorithm, we can write it as a superposition |ϕ〉 =

∑
j αj |ψj〉 over

eigenvectors {|ψj〉}. Therefore, the algorithm will output an estimate of each corresponding
eigenvalue φj with probability |αj |2. This may or may not allow us to infer anything useful,
depending on what we know about U in advance.

• In order to approximate φ to n bits of precision, we needed to apply the operator U2m , for
all 0 ≤ m ≤ n− 1. If we are given U as a black box, this may be prohibitively expensive as
we need to use the black box exponentially many times in n. However, if we have an explicit
circuit for U , we may be able to find a more efficient way of computing U2m .

3.1 Application to quantum counting

An elegant application of phase estimation is to a generalisation of the unstructured (Grover) search
problem. Imagine we have an oracle f : {0, 1}n → {0, 1} which takes the value 1 on k inputs, for
some unknown k, and again set N = 2n. We would like to estimate k by querying f .

Classically, a natural way to do this is by sampling. Imagine that we query f on q random
inputs and get that f is 1 on ` of those inputs. Then as our estimate of k we output k̃ = `N/q.
One can show using properties of the binomial distribution that this achieves

|k̃ − k| = O

(√
k(N − k)

q

)

with high probability. We can achieve improved accuracy by using the phase estimation algorithm.
Consider the “Grover iteration” QG defined on p. 40 of the previous notes. As QG is a rotation
through angle 2θ in a 2-dimensional plane, where θ satisfies sin θ =

√
k/N , its eigenvalues are e2iθ

and e−2iθ. In order to estimate k, we can apply the phase estimation algorithm to QG to estimate
either one of these eigenvalues. As it does not matter which we estimate, we can input any state
within this 2-dimensional plane to the phase estimation algorithm as a claimed eigenvector of QG.
In particular, the state 1√

N

∑N
i=1 |i〉 will work.

By Theorem 13, if we apply the phase estimation algorithm to QG, we can find the closest m-
digit number to θ, for any m, with constant probability of success using O(2m) queries. For small θ,
we have θ ≈

√
k/N , so we learn

√
k/N up to additive error O(1/2m) using O(2m) queries. Setting

2m =
√
N/δ for some real δ > 0, we have learnt

√
k up to additive error O(δ) using O(

√
N/δ)

queries; or in other words have learnt k up to additive error O(δ
√
k) using O(

√
N/δ) queries. In

order to achieve a similar level of accuracy classically, we would need Ω(N/δ2) queries for small k.

Another application of phase estimation, to the order finding problem, is discussed in the
Exercises.

3.2 Further reading

Phase estimation is a useful primitive with many other applications, including implementation of
the QFT over Zd, where d is not a power of 2, and efficiently extracting information from systems
of linear equations [9]. See the lecture notes by Dieter van Melkebeek at http://pages.cs.wisc.
edu/~dieter/Courses/2010f-CS880/ for a discussion of these applications.
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4 Hamiltonian simulation

One of the earliest – and most important – applications of a quantum computer is likely to be
the simulation of quantum mechanical systems. There are quantum systems for which no efficient
classical simulation is known, but which we can simulate on a universal quantum computer. What
does it mean to “simulate” a physical system? According to the OED, simulation is “the technique
of imitating the behaviour of some situation or process (whether economic, military, mechanical,
etc.) by means of a suitably analogous situation or apparatus”. What we will take simulation to
mean here is approximating the dynamics of a physical system.

According to the laws of quantum mechanics, time evolution of the state |ψ〉 of a quantum
system is governed by Schrödinger’s equation:

i~
d

dt
|ψ(t)〉 = H(t)|ψ(t)〉,

where H(t) is a Hermitian operator known as the Hamiltonian of the system (for convenience,
we will henceforth absorb ~ into H(t)). An important special case on which we will focus is the
time-independent setting where H(t) = H is constant. In this case the solution of this equation is

|ψ(t)〉 = e−iHt|ψ(0)〉.

Given a physical system specified by some Hamiltonian H, we would like to simulate the evolution
of the system on an arbitrary initial state for a certain amount of time t. In other words, given H,
we would like to implement a unitary operator which approximates

U(t) = e−iHt.

What does it mean to approximate a unitary? The “gold standard” of approximation is approxi-
mation in the operator norm (aka spectral norm)

‖A‖ := max
|ψ〉6=0

‖A|ψ〉‖
‖|ψ〉‖

,

where ‖|ψ〉‖ =
√
〈ψ|ψ〉 is the usual Euclidean norm of |ψ〉. Note that this is indeed a norm, and

in particular satisfies the triangle inequality ‖A+ B‖ ≤ ‖A‖+ ‖B‖. We say that Ũ approximates
U to within ε if

‖Ũ − U‖ ≤ ε.
This is a natural definition of approximation because it implies that, for any state |ψ〉, Ũ |ψ〉 and
U |ψ〉 are only distance at most ε apart.

4.1 Simulation of k-local Hamiltonians

For simplicity, assume that H is a Hamiltonian of n two-level systems (qubits). In order for our
quantum simulation of H to be efficient, we need U = e−iHt to be approximable by a quantum
circuit containing poly(n) gates. A fairly straightforward counting argument shows that not all
Hamiltonians H can be simulated efficiently. However, it turns out that several important physically
motivated classes can indeed be simulated. The first of these is k-local Hamiltonians.

A Hamiltonian H of n qubits is said to be k-local if it can be written as a sum

H =

m∑
j=1

Hj
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for some m, where each Hj is a Hermitian matrix which acts non-trivially on at most k qubits. That
is, Hj is the tensor product of a matrix H ′j on k qubits, and the identity matrix on the remaining
n− k qubits. For example, the operator on 3 qubits

H = X ⊗ I ⊗ I − 2I ⊗ Z ⊗ Y

is 2-local. Many interesting physical systems are k-local for small k (say k ≤ 3), some of which you
may have heard of. Simple examples include the two-dimensional Ising model on a n × n square
lattice,

H = J
n∑

i,j=1

Z(i,j)Z(i,j+1) + Z(i,j)Z(i+1,j)

and the Heisenberg model on a line,

H =
n∑
i=1

JxX
(i)X(i+1) + JyY

(i)Y (i+1) + JzZ
(i)Z(i+1),

both of which are used in the study of magnetism (in the above, M (j) denotes a single qubit operator
acting on the j’th qubit, and J, Jx, Jy, Jz are constants).

Note that, if H is k-local, we can assume that m ≤
(
n
k

)
= O(nk). We usually assume that

k is constant, in which case m is polynomial in n. We first show that each of the individual Hj

operators can be simulated efficiently, which will be immediate from the following theorem.

Theorem 14 (Solovay-Kitaev theorem). Let U be a unitary operator which acts non-trivially
on k = O(1) qubits, and let S be an arbitrary universal set of quantum gates. Then U can be
approximated in the operator norm to within ε using O(logc(1/ε)) gates from S, for some c < 4.

Proof. Sadly beyond the scope of this course. For a readable explanation, see Andrew Childs’
lecture notes (http://www.math.uwaterloo.ca/~amchilds/).

As each e−iHjt acts non-trivially on only at most k qubits, it follows from the Solovay-Kitaev the-
orem that we can approximate each of these operators individually to within ε in timeO(polylog(1/ε)).
In the special case where all of the Hj operators commute, we have

e−iHt = e−i(
∑m

j=1Hj)t =

m∏
j=1

e−iHjt.

Thus a natural way to find a unitary operator approximating e−iHt is to take the product of our
approximations of e−iH1t, . . . , e−iHmt. Although each of these approximates e−iHjt to within ε, this
does not imply that their product approximates e−iHt to within ε. However, we now show that the
approximation error only scales linearly (similarly to the situation with “deviation” vectors in the
quantum search lower bound).

Lemma 15. Let (Ui), (Vi) be sequences of m unitary operators satisfying ‖Ui − Vi‖ ≤ ε for all
1 ≤ i ≤ m. Then ‖Um . . . U1 − Vm . . . V1‖ ≤ mε.
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Proof. The proof is by induction on m. The claim trivially holds for m = 1. Assuming that it
holds for a given m, we have

‖Um+1Um . . . U1 − Vm+1Vm . . . V1‖
= ‖Um+1Um . . . U1 − Um+1Vm . . . V1 + Um+1Vm . . . V1 − Vm+1Vm . . . V1‖
≤ ‖Um+1Um . . . U1 − Um+1Vm . . . V1‖+ ‖Um+1Vm . . . V1 − Vm+1Vm . . . V1‖
= ‖Um+1(Um . . . U1 − Vm . . . V1)‖+ ‖(Um+1 − Vm+1)Vm . . . V1‖
= ‖Um . . . U1 − Vm . . . V1‖+ ‖Um+1 − Vm+1‖
≤ (m+ 1)ε.

Thus, in order to approximate
∏m
j=1 e

−iHjt to within ε, it suffices to approximate each of the
Hj to within ε/m. We formalise this as the following proposition.

Proposition 16. Let H be a Hamiltonian which can be written as the sum of m commuting terms
Hj, each acting non-trivially on k = O(1) qubits. Then, for any t, there exists a quantum circuit
which approximates the operator e−iHt to within ε in time O(m polylog(m/ε)).

4.2 The non-commuting case

Unfortunately, this simulation technique does not necessarily work for non-commuting Hj . The rea-
son is that if A and B are non-commuting operators, it need not hold that e−i(A+B)t = e−iAte−iBt.
However, we can simulate non-commuting Hamiltonians via an observation known as the Lie-Trotter
product formula.

In what follows, the notation X +O(ε), for a matrix X, is used as shorthand for X +E, where
E is a matrix satisfying ‖E‖ ≤ Cε, for some universal constant C (not depending on X or ε).

Lemma 17 (Lie-Trotter product formula). Let A and B be Hermitian matrices such that ‖A‖ ≤ K
and ‖B‖ ≤ K, for some real K ≤ 1. Then

e−iAe−iB = e−i(A+B) +O(K2).

Proof. From the Taylor series for ex, for any matrix A such that ‖A‖ = K ≤ 1, we have

e−iA = I − iA+
∞∑
k=2

(−iA)k

k!
= I − iA+ (−iA)2

∞∑
k=0

(−iA)k

(k + 2)!
= I − iA+O(K2).

Hence

e−iAe−iB =
(
I − iA+O(K2)

) (
I − iB +O(K2)

)
= I − iA− iB +O(K2) = e−i(A+B) +O(K2).

Applying this formula multiple times, for any Hermitian matrices H1, . . . ,Hm satisfying ‖Hj‖ ≤
K ≤ 1 for all j,

e−iH1e−iH2 . . . e−iHm =
(
e−i(H1+H2) +O(K2)

)
e−iH3 . . . e−iHm

=
(
e−i(H1+H2+H3) +O((2K)2)

)
e−iH4 . . . e−iHm +O(K2)

= e−i(H1+···+Hm) +O(K2) +O((2K)2) + · · ·+O(((m− 1)K)2)

= e−i(H1+···+Hm) +O(m3K2).
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Therefore, there is a universal constant C such that if n ≥ Cm3(Kt)2/ε,∥∥∥e−iH1t/ne−iH2t/n . . . e−iHmt/n − e−i(H1+···+Hm)t/n
∥∥∥ ≤ ε/n.

By Lemma 15, for any such n∥∥∥(e−iH1t/ne−iH2t/n . . . e−iHmt/n
)n
− e−i(H1+···+Hm)t

∥∥∥ ≤ ε.
Given this result, we can simulate a k-local Hamiltonian simply by simulating the evolution of
each term for time t/n to high enough accuracy and concatenating the individual simulations. We
formalise this as the following theorem.

Theorem 18. Let H be a Hamiltonian which can be written as the sum of m terms Hj, each acting
non-trivially on k = O(1) qubits and satisfying ‖Hj‖ ≤ K for some K. Then, for any t, there exists
a quantum circuit which approximates the operator e−iHt to within ε in time O(m3(Kt)2/ε), up to
polylogarithmic factors.

It seems somewhat undesirable that, in order to simulate a Hamiltonian for time t, this algorithm
has dependence on t which is O(t2). In fact, using more complicated simulation techniques, this
can be improved to time O(t1+δ) for an arbitrarily small constant δ > 0 [4].

4.3 Further reading

The quantum simulation algorithm discussed here is due to Lloyd [13]; there is an interesting
previous discussion by Feynman [7] about why efficient classical simulation of quantum systems
should not be possible. Can we do better than this quantum simulation algorithm? It has been
shown using quantum lower bound techniques that, in an oracular setting, simulating eiHt in time
faster than O(t) is not possible (a “no-fast-forwarding theorem” [4]).

5 Quantum error-correction

Modern computer hardware is extremely reliable. Indeed, it can usually be assumed to be error-free
for all intents and purposes1. However, early quantum computing hardware is likely to be far from
reliable. Even worse, efficient quantum algorithms rely on delicate quantum effects (superposition
and entanglement) which must be preserved in the presence of errors. Luckily, it turns out that
errors can be fought using the notion of quantum error-correcting codes. To understand these
codes, it is helpful to first consider a basic classical notion of error correction.

Imagine we have a single bit x which we would like to store in a noisy storage device. A natural
model for this noise is that each bit stored in the device gets flipped with probability p, for some
0 ≤ p ≤ 1, and is left the same with probability 1−p. So if we store x in the device and then read it
back later, we get the wrong answer with probability p. One way to improve this works as follows.
Instead of just storing x, store the string xxx, i.e. repeat x three times. Then read out each of the
bits of the (potentially corrupted) string to get y := y1y2y3, and output 0 if the majority of the
bits of y are 0, and 1 otherwise.

What is the probability of failing to output x if this strategy is followed? The wrong answer will
be returned if two or more of the bits of y are flipped by noise, which will occur with probability

1Software, of course, is another matter.
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3p2(1− p) + p3 = p2(3− 2p) = O(p2). Thus, if p is small, this strategy has improved our resistance
to noise. Indeed, for any p such that 0 < p < 1/2, we have

p2(3− 2p) < p,

so the probability of error has been reduced. Another way of looking at this situation is that we
have stored a bit in such a way that it is impervious to an error affecting a single bit in the storage
device. The map x 7→ xxx is a very simple example of an error correcting code known as the binary
repetition code of length 3.

5.1 Quantum errors and error-correction

We would like to find a quantum analogue of this notion of error correction. Rather than preserving
classical bits x, our quantum error correcting code should preserve a qubit |ψ〉 under some notion of
error. We say here that an error affecting one or more qubits is simply an arbitrary and unknown
unitary operator N applied to those qubits2. The classical bit-flip error discussed above is an
example of this, as it can be seen as simply applying the operator X to a qubit in a computational
basis state (recall that X|0〉 = |1〉 and X|1〉 = |0〉). The process of correcting errors in a qubit state
|ψ〉 can be written diagrammatically as

|ψ〉
E N D

|ψ′〉
|0n〉

for some unitary encoding operation E, noise operation N , and decoding operation D. In other
words, we encode some qubit state |ψ〉 as a larger state |E(ψ)〉 using some ancilla qubits (initially
in the state |0n〉), some noise is applied, and later we decode the noisy encoded state to produce a
state |ψ′〉. The goal is that after this process |ψ′〉 ≈ |ψ〉 for some set of correctable noise operations
N .

There are two obvious ways in which the classical repetition code could be translated to the
quantum regime, both of which unfortunately do not work. First, we could measure |ψ〉 in the
computational basis to obtain a bit 0 or 1, then just encode this with the classical repetition code.
This is not suitable for quantum error correction because it does not preserve quantum coherence:
if |ψ〉 is in a superposition of 0 and 1 and will be used as input to a subsequent quantum algorithm,
it is necessary to preserve this superposition to see any interesting quantum effects. A second idea is
that we could map |ψ〉 7→ |ψ〉|ψ〉|ψ〉, by analogy with the classical code. However, this is impossible
(for general |ψ〉) by the no-cloning theorem.

We therefore have to take a different approach, which will be split into two steps. In the first
step, we try encoding |ψ〉 = α|0〉+β|1〉 as |E(ψ)〉 = α|000〉+β|111〉. Note that this is not the same
as the “cloning” map discussed previously. Indeed, the map α|0〉+ β|1〉 7→ α|000〉+ β|111〉 can be
implemented via the following simple quantum circuit.

α|0〉+ β|1〉 • •
|0〉
|0〉

2This is in fact a simplification of the real situation; in order to describe the full set of possible errors, one needs
to introduce the framework of mixed quantum states and completely positive maps. This will be discussed in the
Quantum Information Theory course next term.
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Our decoding algorithm for this code will be based on the following quantum circuit.

|x1〉 • •
|x2〉 •
|x3〉 •
|0〉
|0〉

Call the first three qubits the input qubits and the last two the output qubits. Following this
circuit, for any basis state input |x1x2x3〉, the first of the two output qubits contains x1 ⊕ x2, and
the second contains x1 ⊕ x3. Each of these quantities is invariant under the operation of flipping
all the bits of x. Thus, for any input superposition of the form α|x1x2x3〉 + β|x1x2x3 ⊕ 111〉, the
circuit performs the map

(α|x1x2x3〉+ β|x1x2x3 ⊕ 111〉)|0〉|0〉 7→ (α|x1x2x3〉+ β|x1x2x3 ⊕ 111〉)|x1 ⊕ x2〉|x1 ⊕ x3〉.

This implies that, if we measure the two output qubits, we learn both x1⊕ x2 and x1⊕ x3 without
disturbing the input quantum state. Now observe that the encoded state of |ψ〉 is always of this
form, even after arbitrary bit-flip errors are applied to |E(ψ)〉:

|E(ψ)〉 = α|000〉+ β|111〉,
(X ⊗ I ⊗ I)|E(ψ)〉 = α|100〉+ β|011〉,

(X ⊗X ⊗X)|E(ψ)〉 = α|111〉+ β|000〉, etc.

The result of measuring the output qubits is known as the syndrome. We now consider the different
syndromes we get when different noise operators N are applied to |E(ψ)〉. First, if N = I (so there
has been no error applied to |E(ψ)〉), we always measure 00. On the other hand, if N = X ⊗ I ⊗ I
(i.e. a bit-flip error on the first qubit) we obtain 11 with certainty. We can write all the possible
outcomes in a table as follows.

N Syndrome

I ⊗ I ⊗ I 00
I ⊗ I ⊗X 01
I ⊗X ⊗ I 10
I ⊗X ⊗X 11
X ⊗ I ⊗ I 11
X ⊗ I ⊗X 10
X ⊗X ⊗ I 01
X ⊗X ⊗X 00

Observe that the syndromes corresponding to no error, and to bit flips on single qubits (i.e. I⊗I⊗I,
I ⊗ I ⊗X, I ⊗X ⊗ I and X ⊗ I ⊗ I) are all distinct. This means that, if one of these four errors
occurs, we can detect it. After we detect a bit-flip error on a given qubit, we can simply apply the
same bit-flip operation to that qubit to restore the original encoded state α|000〉 + β|111〉, which
can easily then be mapped to α|0〉+ β|1〉 by reversing the original encoding circuit. On the other
hand, if bit-flip errors occur on more than one qubit, we do not detect them (and indeed this “error
correction” process can make matters worse!).

While this code is sufficient to protect against single bit-flip errors, there are other, less classical,
errors acting on single qubits which it does not protect against. For example, consider the effect
of a Z (“phase”) error acting on the first qubit of the encoded state |E(ψ)〉, which maps it to
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α|000〉 − β|111〉 (recall that Z =
(
1 0
0 −1

)
). It is easy to see that the syndrome measurement still

returns 00, so the error correction operation does nothing and the Z error is not corrected.

However, these Z errors can be detected using a different code. Observe that Z = HXH, where
H is the Hadamard gate. Thus Z acts in the same way as X, up to a change of basis. If we use
the same code as before, but perform this change of basis for each qubit, we obtain a code which
corrects against Z errors. In other words, we now encode |ψ〉 as α|+ + +〉 + β|− − −〉. Our new
encoding circuit is simply

α|0〉+ β|1〉 • • H

|0〉 H

|0〉 H

and our decoding circuit is
|x1〉 H • •

|x2〉 H •

|x3〉 H •

|0〉

|0〉
The analysis for the previous code goes through without change to show that this code protects
against Z errors on an individual qubit. However, it is easy to see that the new code no longer
protects against X errors! Can we protect against both errors simultaneously? The answer is
yes, by concatenating these two codes. We first encode |ψ〉 = α|0〉+ β|1〉 using the code protecting
against phase flips, and then encode each of the resulting qubits using the code that protects against
bit flips. In other words, we perform the map

α|0〉+ β|1〉 7→ 1

2
√

2
(α(|0〉+ |1〉)(|0〉+ |1〉)(|0〉+ |1〉) + β(|0〉 − |1〉)(|0〉 − |1〉)(|0〉 − |1〉))

7→ 1

2
√

2
(α(|000〉+ |111〉)(|000〉+ |111〉)(|000〉+ |111〉)

+ β(|000〉 − |111〉)(|000〉 − |111〉)(|000〉 − |111〉)).

The single qubit |ψ〉 is now encoded using 9 qubits. These qubits can naturally be split into three
blocks, each of which encodes one qubit of the state α|+ + +〉+β|− − −〉. To decode this encoded
state, first the decoding circuit for the bit-flip code is applied to each block. Assuming at most one
bit-flip error has occurred in each block, the result will be the state α|+ + +〉+ β|− − −〉, perhaps
with a Z error applied to one of the qubits. This state can then be mapped back to α|0〉 + β|1〉
using the decoding algorithm for the phase-flip code.

Example. Imagine a ZX error occurs on the fourth qubit of the encoded state. The input to
the decoding algorithm is thus the state

1

2
√

2
(α(|000〉+ |111〉)(|100〉− |011〉)(|000〉+ |111〉) + β(|000〉− |111〉)(|100〉+ |011〉)(|000〉− |111〉)).

We apply the bit-flip decoding algorithm to each of the three blocks of three qubits, and get
syndromes of 00, 11, 00 (“no error”, “error on first qubit”, “no error”). So we perform an X
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operation on the fourth qubit to correct this, and then the map |000〉 7→ |0〉, |111〉 7→ |1〉 on each
block of three qubits. The result is the state

α|+−+〉+ β|−+−〉.

Applying the phase-flip decoding algorithm to this state gives α|0〉+ β|1〉 as required.

We now have a code that can protect against X or Z errors acting on an arbitrary qubit. It may
seem that this is only the beginning of the gargantuan task of protecting against every one of the
infinitely many possible errors that can occur. In fact, it turns out that we have already done this!
The key observation is that the matrices {I,X, Y, Z}, where Y = ZX, form a basis for the complex
vector space of all 2 × 2 matrices, so an arbitrary error operation N acting on a single qubit can
be written as a linear combination of these matrices. By the linearity of quantum mechanics, this
implies that our code, which as discussed can correct single qubit X, Z and ZX errors, in fact can
correct an arbitrary error N on an individual qubit (up to an unobservable global phase). A nice
way of looking at this is that, if the state of the computer is in a superposition of each of these
different errors having occurred, measuring the syndrome projects onto only one of them having
occurred, which can then be corrected.

5.2 Further reading

The code discussed above is known as Shor’s 9 qubit code and was one of the first quantum error-
correcting codes discovered. The field of quantum error correction has since developed an extensive
literature; a good recent review is [8].

6 Discrete-time quantum walk

We now discuss a quantum generalisation of the classical concept of random walk. Classically,
random walks are an important algorithmic tool, and the same has proven to be true for quantum
walks. We begin by introducing the most basic variant of quantum walk, walk on the line.

6.1 Quantum walk on the line

Classically, the simple random walk on the line is defined as follows. A particle (“walker”) is placed
on an infinite line at position 0. At each time step, the walker flips an unbiased coin. If the result is
heads, it moves left by 1; otherwise, it moves right by 1. The probability of being found at position
x after t steps is exactly

1

2t

(
t
t+x
2

)
,

where we define
(
t
r

)
= 0 for non-integer r. (This is easily derived as follows: there are 2t different

paths of n steps that could be taken; the paths which end up at x are exactly those with (t+ x)/2
right-moving steps; and there are

(
t

(t+x)/2

)
such paths.) We can see from this that the probability

decays quickly for |x| outside the range O(
√
t), and indeed one can calculate the variance of the

position p as

E[p2] = E

( t∑
i=1

Zi

)2
 =

t∑
i,j=1

E[ZiZj ] =

t∑
i=1

E[Z2
i ] = t,
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where the Zi ∈ {±1} are random variables determining whether the i’th step is to the left or the
right. We look for a quantum generalisation of this simple process.

One natural generalisation is as follows. Consider a quantum system with two registers |x〉|c〉,
where the first holds an integer position3 x and the second holds a coin state c ∈ {L,R}. As in the
classical case, at each step our quantum walk will flip a coin and then decide in which direction to
move. These two operations will be unitary: a coin operator C, and a shift operator S. The coin
operator acts solely on the coin register, and consists of a Hadamard operation:

C|L〉 =
1√
2

(|L〉+ |R〉) , C|R〉 =
1√
2

(|L〉 − |R〉) .

The shift operator acts on both registers, and simply moves the walker in the direction indicated
by the coin state:

S|x〉|L〉 = |x− 1〉|L〉, S|x〉|R〉 = |x+ 1〉|R〉.

Then a quantum walk on the line for t steps consists of applying the unitary operator (S(I⊗C))t to
some initial state. Remarkably, these simple dynamics can lead to some fairly complicated results.
Consider the first few steps of a quantum walk with initial state |0〉|L〉 (position 0, facing left).
One can calculate that the state evolves as follows.

|0〉|L〉 7→ 1√
2

(|−1〉|L〉+ |1〉|R〉)

7→ 1

2
(|−2〉|L〉+ |0〉|R〉+ |0〉|L〉 − |2〉|R〉)

7→ 1

2
√

2
(|−3〉|L〉+ |−1〉|R〉+ 2|−1〉|L〉 − |1〉|L〉+ |3〉|R〉)

7→ . . .

Consider the result of measuring the position register after the third step. Positions −3, 1 and 3
are obtained with probability 1/8 each, and position −1 is obtained with probability 5/8. In other
words, the most likely position for the particle to be found in is −1. By contrast, the classical
random walk is symmetric about 0 (and in fact is found in position −3 or 3 with probability 1/8
each, and −1 and 1 with probability 3/8 each). The bias of the quantum walk is an effect of
interference. If the quantum walk is run for more steps before measuring the position, we obtain
the pattern illustrated in Figure 2.

Note that, unlike the classical walk, the quantum walk is not symmetric about 0. Intuitively,
this is caused by the Hadamard coin treating the L and R directions differently: only the |R〉
state gets mapped to a state containing a negative amplitude, leading to destructive interference
in this direction. This asymmetry can be removed by changing the initial state of the coin register
to 1√

2
|0〉(|L〉 + i|R〉), or alternatively by using a different coin operator. Figure 3 compares the

distribution of probabilities obtained for classical and (symmetric) quantum walks.

The quantum walk seems to spread out from the origin faster than the classical walk. Indeed,
it can be shown that the variance is Ω(t2), noticeably faster than the classical O(t). Unlike the
straightforward analysis of the classical random walk, the effect of interference means that it is
quite involved to prove this, so we will not do so here; for details, see [15]. This difference between
quantum and classical walks will become more pronounced when we consider more general graphs.

3The reader might object to a register that stores an arbitrary integer. In this case, consider it to store an integer
mod m for some large m.
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Figure 2: The distribution of positions following a quantum walk on the line for 100 steps using
the Hadamard coin. Only even positions are shown as the amplitude at odd positions is 0.

6.2 Quantum walk on general graphs

There is a natural generalisation of the classical random walk on the line to a random walk on an
arbitrary graph G with m vertices. The walker is positioned at a vertex of G, and at each time
step, it chooses an adjacent vertex to move to, uniformly at random. Here we will consider only
undirected graphs where the ability to move from A to B implies the ability to move from B to
A. Further, we restrict to regular graphs for simplicity, i.e. those whose every vertex has degree d.
Labelling vertices by integers between 1 and m, the probability of being at vertex j after t steps,
given that the walk started at vertex i, can then be written in compact form as 〈j|M t|i〉 for some
matrix M , where

Mij =

{
1
d if i is connected to j

0 otherwise.

Random walks on graphs have been intensively studied in computer science for their many algorith-
mic applications, as well as for their intrinsic mathematical interest. For example, one of the most
efficient (and simplest) algorithms known for the fundamental problem of boolean satisfiability
(SAT) is based on a random walk [17].

We now consider how a quantum generalisation of this process can be found. We still have
position and coin registers, but now the position register is m-dimensional and the coin register is
d-dimensional. Label each vertex with a distinct integer between 1 and m, and for each vertex,
label its outgoing edges with distinct integers between 1 and d such that, for each i, the edges
labelled with i form a cycle. For each vertex v ∈ {1, . . . ,m}, let N(v, i) denote the i’th neighbour
of v (i.e. the vertex at the other end of the i’th edge).

Then our quantum walk will once again consist of alternating shift and coin operators S and
C, i.e. each step is of the form (S(I ⊗ C)). The shift operator simply performs the map

S|v〉|i〉 = |N(v, i)〉|i〉,

and the coin operator C once again acts only on the coin register. However, as this is now d-
dimensional, we have many possible choices for C. One reasonable choice is the so-called Grover
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Figure 3: Quantum walk on the line for 100 steps with starting coin state 1√
2
|0〉(|L〉 + i|R〉),

compared with classical walk for 100 steps (red dashed line). Only even positions are shown as the
amplitude at odd positions is 0.

coin,

C =


2
d − 1 2

d . . . 2
d

2
d

2
d − 1 . . . 2

d
...

...
. . .

...
2
d

2
d . . . 2

d − 1

 .

This is just the iteration used in Grover’s algorithm. This operator is an appealing choice because it
is permutation-symmetric (i.e. treats all edges equally), and it is far away from the identity matrix
(i.e. has a large mixing effect). If d = 2, we would get C = ( 0 1

1 0 ), so in this case the coins used
earlier for the walk on the line lead to more interesting behaviour.

6.3 Exponentially faster hitting on the hypercube

We now focus on one particularly interesting graph: the n-dimensional hypercube (aka the Cayley
graph of the group Zn2 ). This is the graph whose vertices are n-bit strings which are adjacent if
they differ in exactly one bit. Each edge x ↔ y of this graph is naturally labelled by the index
of the single bit where x and y differ. We will be interested in the expected time it takes for a
random walk on this graph to travel from the “all zeroes” string 0n to the “all ones” string 1n, i.e.
to traverse the graph from one extremity to the other, which is known as the hitting time from 0n

to 1n.

Classically, this time can be analysed by mapping the walk to a (biased) random walk on the
line. Imagine the walker is currently at a vertex with Hamming weight k. The probability of
moving to a vertex with Hamming weight (k− 1) is k/n, and the probability of moving to a vertex
with Hamming weight (k + 1) is 1 − k/n. Observe that, as k increases, the probability of a step
leading to the Hamming weight increasing decreases, so intuitively the walker becomes “stuck” in
the “middle” of the graph (i.e. near Hamming weight n/2).

More rigorously, we have the following proposition.

Proposition 19. The hitting time from 0n to 1n is at least 2n − 1.
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Proof. Let h(k) be the expected number of steps until the walk hits 1n, given that it starts with
Hamming weight k. We have the recurrence

h(k) =
k

n
h(k − 1) +

(
1− k

n

)
h(k + 1) + 1,

with the boundary case h(n) = 0. Writing δ(k) = h(k)− h(k + 1), this can be simplified to

δ(k) =

(
n

k + 1
− 1

)
δ(k + 1)− n

k + 1

and the recurrence solved to give

δ(k) =
1(
n−1
k

) k∑
j=0

(
n

j

)
, and hence h(0) =

n−1∑
k=0

δ(n) =

n−1∑
k=0

1(
n−1
k

) k∑
j=0

(
n

j

)
.

Thus h(0) can be lower bounded by rearranging the sum to give

h(0) =

n−1∑
j=0

(
n

j

) n−1∑
k=j

1(
n−1
k

) ≥ n−1∑
j=0

(
n

j

)
= 2n − 1.

We thus see that the expected time to reach the 1n vertex is exponential in n. However, for
quantum walks the situation is very different, and we have the following result.

Theorem 20. If a quantum walk on the hypercube is performed for T ≈ π
2n steps starting in

position 0n, and the position register is measured, the outcome 1n is obtained with probability
1−O(polylog(n)/n).

Once again, the proof of this result is too technical to include here (for details, see [12]). How-
ever, we can give a sketch of the first part of one proof strategy, which is analogous to the classical
case, and consists of simplifying to a walk on the line. Define a set of 2n states {|υk, L〉, |υk, R〉}
indexed by an integer k = 0, . . . , n as follows:

|υk, L〉 :=
1√
k
(
n
k

) ∑
x,|x|=k

∑
i,xi=1

|x〉|i〉, |υk, R〉 :=
1√

(n− k)
(
n
k

) ∑
x,|x|=k

∑
i,xi=0

|x〉|i〉,

with the exception of the special cases |υ0, L〉 and |υn, R〉, which will not be used and are undefined.
Now observe that the quantum walk on the hypercube preserves tbe subspace spanned by this set
of states:

S|υk, L〉 =
1√
k
(
n
k

) ∑
x,|x|=k

∑
i,xi=1

|x⊕ ei〉|i〉 =
1√
k
(
n
k

) ∑
x,|x|=k−1

∑
i,xi=0

|x〉|i〉 = |υk−1, R〉,

and similarly S|υk, R〉 = |υk+1, L〉. In the case of the coin operator, it turns out that

(I ⊗ C)|υk, L〉 =

(
2k

n
− 1

)
|υk, L〉+

2
√
k(n− k)

n
|υk, R〉

and (I ⊗ C)|υk, R〉 =
2
√
k(n− k)

n
|υk, L〉+

(
1− 2k

n

)
|υk, R〉.

This behaviour is similar to the quantum walk on the line, with two differences: first, the direction
in which the walker is moving flips with each shift, and second, the coin is different at each position
(i.e. depends on k). Based on this reduction, it is easy to plot the behaviour of this quantum walk
numerically for small n, as shown in Figure 4.
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Figure 4: Quantum walk on a 50-dimensional hypercube for 60 steps starting in state |υ0, R〉,
compared with classical walk for 1000 steps (red dashed line). Graph plots probability of being at
a point with Hamming weight k. Only even positions are shown as the amplitude at odd positions
is 0.

6.4 Further reading

Two good (though now somewhat dated) survey papers on quantum walks are [1, 11]. The result
that quantum walks on the hypercube hit exponentially faster is originally due to Julia Kempe [12];
also see [18] for a connection to quantum search. Perhaps surprisingly, this exponentially faster
hitting does not imply an exponential quantum speed-up over classical algorithms for search on
the hypercube (i.e. the task of finding the 1n vertex, starting at the 0n vertex). However, such a
speed-up has been proven for a different family of graphs [6].
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