
A brief overview of some recent quantum
algorithms

Ashley Montanaro

Centre for Quantum Information and Foundations,
Department of Applied Mathematics and Theoretical Physics,

University of Cambridge

16 May 2013

Quantum algorithms

Is there life beyond Shor and Grover?

The Quantum Algorithm Zoo
(http://math.nist.gov/quantum/zoo/) cites 199
papers on quantum algorithms.

Further, in recent years a number of conceptually different
underlying techniques for quantum algorithm design
have been developed.

http://math.nist.gov/quantum/zoo/

Quantum algorithms

Is there life beyond Shor and Grover?

The Quantum Algorithm Zoo
(http://math.nist.gov/quantum/zoo/) cites 199
papers on quantum algorithms.

Further, in recent years a number of conceptually different
underlying techniques for quantum algorithm design
have been developed.

http://math.nist.gov/quantum/zoo/

This tutorial

In this talk, I’ll focus on the techniques behind a number of
quantum algorithms, and how they can be applied to various
problems.

In particular:

Techniques Applications

Phase estimation
Hamiltonian simulation
Quantum walks
Learning graphs

Linear equations
Escaping from mazes
Element distinctness
Searching for subgraphs

Disclaimer: This is a broad overview which will omit most
technical details.

This tutorial

In this talk, I’ll focus on the techniques behind a number of
quantum algorithms, and how they can be applied to various
problems.

In particular:

Techniques Applications

Phase estimation
Hamiltonian simulation
Quantum walks
Learning graphs

Linear equations
Escaping from mazes
Element distinctness
Searching for subgraphs

Disclaimer: This is a broad overview which will omit most
technical details.

This tutorial

In this talk, I’ll focus on the techniques behind a number of
quantum algorithms, and how they can be applied to various
problems.

In particular:

Techniques Applications

Phase estimation
Hamiltonian simulation
Quantum walks
Learning graphs

Linear equations
Escaping from mazes
Element distinctness
Searching for subgraphs

Disclaimer: This is a broad overview which will omit most
technical details.

Not this tutorial

Some other quantum algorithms which I won’t mention in this
talk:

Hidden subgroups and optimal measurement (e.g. [Bacon
et al 0504083])
Number-theoretic problems (e.g. [Fontein and Wocjan
1111.1348], . . .)
Formula evaluation (e.g. [Reichardt and Špalek 0710.2630])
Tensor contraction (e.g. [Arad and Landau 0805.0040])
Hidden shift problems (e.g. [Gavinsky et al 1103.3017])
Adiabatic optimisation (e.g. [Farhi et al 0001106])
. . .

(all citations are to arXiv identifiers)

Primitive: Phase estimation

Phase estimation [Cleve et al 9708016] [Kitaev 9511026]

Given access to a unitary U and an eigenvector |ψ〉 such that
U|ψ〉 = e2πiφ|ψ〉, we can estimate φ up to additive error ε, with
99% probability of success, by using U O(1/ε) times.

We apply the following circuit with n = O(log 1/ε):

|0〉 H . . . •

QFT−1
...

|0〉 H • . . .

|0〉 H • . . .

|ψ〉 U20

U21 . . . U2n−1

n

and then measure the first n qubits.

Primitive: Phase estimation

Phase estimation [Cleve et al 9708016] [Kitaev 9511026]

Given access to a unitary U and an eigenvector |ψ〉 such that
U|ψ〉 = e2πiφ|ψ〉, we can estimate φ up to additive error ε, with
99% probability of success, by using U O(1/ε) times.

We apply the following circuit with n = O(log 1/ε):

|0〉 H . . . •

QFT−1
...

|0〉 H • . . .

|0〉 H • . . .

|ψ〉 U20

U21 . . . U2n−1

n

and then measure the first n qubits.

Phase estimation
Let the measurement result be x and output as our guess for φ

0.x1x2 . . . xn =
x1

2
+

x2

4
+ · · ·+ xn

2n .

Why does this work?

The state before we apply the inverse QFT is

1√
2n

2n−1∑
y=0

e2πiφy|y〉|ψ〉.

So, if φ = z/2n for some integer z, the probability of
getting outcome x is

1
22n

∣∣∣∣∣∣
2n−1∑
y=0

e2πiy(φ−x/2n)

∣∣∣∣∣∣
2

=
1

22n

∣∣∣∣∣∣
2n−1∑
y=0

eπiy(z−x)/2n−1

∣∣∣∣∣∣
2

= δxz.

If φ ≈ z/2n, we still output z̃ ≈ z with high probability.

Phase estimation
Let the measurement result be x and output as our guess for φ

0.x1x2 . . . xn =
x1

2
+

x2

4
+ · · ·+ xn

2n .

Why does this work?

The state before we apply the inverse QFT is

1√
2n

2n−1∑
y=0

e2πiφy|y〉|ψ〉.

So, if φ = z/2n for some integer z, the probability of
getting outcome x is

1
22n

∣∣∣∣∣∣
2n−1∑
y=0

e2πiy(φ−x/2n)

∣∣∣∣∣∣
2

=
1

22n

∣∣∣∣∣∣
2n−1∑
y=0

eπiy(z−x)/2n−1

∣∣∣∣∣∣
2

= δxz.

If φ ≈ z/2n, we still output z̃ ≈ z with high probability.

Phase estimation
Let the measurement result be x and output as our guess for φ

0.x1x2 . . . xn =
x1

2
+

x2

4
+ · · ·+ xn

2n .

Why does this work?

The state before we apply the inverse QFT is

1√
2n

2n−1∑
y=0

e2πiφy|y〉|ψ〉.

So, if φ = z/2n for some integer z, the probability of
getting outcome x is

1
22n

∣∣∣∣∣∣
2n−1∑
y=0

e2πiy(φ−x/2n)

∣∣∣∣∣∣
2

=
1

22n

∣∣∣∣∣∣
2n−1∑
y=0

eπiy(z−x)/2n−1

∣∣∣∣∣∣
2

= δxz.

If φ ≈ z/2n, we still output z̃ ≈ z with high probability.

Phase estimation
Let the measurement result be x and output as our guess for φ

0.x1x2 . . . xn =
x1

2
+

x2

4
+ · · ·+ xn

2n .

Why does this work?

The state before we apply the inverse QFT is

1√
2n

2n−1∑
y=0

e2πiφy|y〉|ψ〉.

So, if φ = z/2n for some integer z, the probability of
getting outcome x is

1
22n

∣∣∣∣∣∣
2n−1∑
y=0

e2πiy(φ−x/2n)

∣∣∣∣∣∣
2

=
1

22n

∣∣∣∣∣∣
2n−1∑
y=0

eπiy(z−x)/2n−1

∣∣∣∣∣∣
2

= δxz.

If φ ≈ z/2n, we still output z̃ ≈ z with high probability.

Primitive: Hamiltonian simulation

Hamiltonian simulation
Given a description of a Hamiltonian H on n qubits and a time
t, implement U such that ‖U − e−iHt‖ 6 ε.

Classic example:

Simulation of k-local Hamiltonians
Let H be a k-local Hamiltonian, i.e.

H =

m∑
j=1

Hj

where each Hj acts only on k = O(1) qubits and satisfies
‖Hj‖ 6 L. Then H can be simulated for time t in
poly(n,L, t, 1/ε) time [Lloyd, Science 273, 1073-1078 (1996)].

Primitive: Hamiltonian simulation

Hamiltonian simulation
Given a description of a Hamiltonian H on n qubits and a time
t, implement U such that ‖U − e−iHt‖ 6 ε.

Classic example:

Simulation of k-local Hamiltonians
Let H be a k-local Hamiltonian, i.e.

H =

m∑
j=1

Hj

where each Hj acts only on k = O(1) qubits and satisfies
‖Hj‖ 6 L. Then H can be simulated for time t in
poly(n,L, t, 1/ε) time [Lloyd, Science 273, 1073-1078 (1996)].

Simulation of sparse Hamiltonians

A generalisation of this problem:

Sparse Hamiltonian simulation
Let H be a Hamiltonian on n qubits such that each row of H
has at most d non-zero entries. We are given black-box access
to H via a function f such that f (i, j) returns the j’th non-zero
element of row i.

We say that H is d-sparse. (NB: a k-local Hamiltonian is
2k-sparse.)

Theorem [Aharonov and Ta-Shma 0301023, . . .]

H can be simulated for time t up to error ε with
poly(n, ‖H‖, t, d, 1/ε) uses of f .

Simulation of sparse Hamiltonians

A generalisation of this problem:

Sparse Hamiltonian simulation
Let H be a Hamiltonian on n qubits such that each row of H
has at most d non-zero entries. We are given black-box access
to H via a function f such that f (i, j) returns the j’th non-zero
element of row i.

We say that H is d-sparse. (NB: a k-local Hamiltonian is
2k-sparse.)

Theorem [Aharonov and Ta-Shma 0301023, . . .]

H can be simulated for time t up to error ε with
poly(n, ‖H‖, t, d, 1/ε) uses of f .

Simulation of sparse Hamiltonians (sketch)
We can simulate H by decomposing it as a sum of efficiently
simulable Hamiltonians and recombining using the Lie-Trotter
formula

e−iAte−iBt = e−i(A+B)t + O(t2 max{‖A‖, ‖B‖}2).

First imagine that H is 1-sparse, i.e. each row of H has at most
one non-zero entry. Then H looks like this:

∗
∗

∗

∗
∗

∗
∗

where only starred entries are non-zero.

Simulation of sparse Hamiltonians (sketch)
We can simulate H by decomposing it as a sum of efficiently
simulable Hamiltonians and recombining using the Lie-Trotter
formula

e−iAte−iBt = e−i(A+B)t + O(t2 max{‖A‖, ‖B‖}2).

First imagine that H is 1-sparse, i.e. each row of H has at most
one non-zero entry. Then H looks like this:

∗
∗

∗

∗
∗

∗
∗

where only starred entries are non-zero.

Simulation of sparse Hamiltonians (sketch)

Thus H is equivalent to a direct sum of 1 and
2-dimensional Hamiltonians Hk, each of which can be
simulated efficiently.

e.g. a 2D part Hk on rows i and f (i, 1) can be simulated
using the Solovay-Kitaev theorem to implement e−iHkt on
the space spanned by |i〉, |f (i, 1)〉.

Claim: Any d-sparse Hamiltonian can be decomposed as a
sum of poly(d,n) 1-sparse Hamiltonians. This
decomposition can be found efficiently.

=

∗

∗

∗

+

 ∗
∗

∗

+

 ∗
∗

Simulation of sparse Hamiltonians (sketch)

Thus H is equivalent to a direct sum of 1 and
2-dimensional Hamiltonians Hk, each of which can be
simulated efficiently.

e.g. a 2D part Hk on rows i and f (i, 1) can be simulated
using the Solovay-Kitaev theorem to implement e−iHkt on
the space spanned by |i〉, |f (i, 1)〉.

Claim: Any d-sparse Hamiltonian can be decomposed as a
sum of poly(d,n) 1-sparse Hamiltonians. This
decomposition can be found efficiently.

=

∗

∗

∗

+

 ∗
∗

∗

+

 ∗
∗

Simulation of sparse Hamiltonians (sketch)

Thus H is equivalent to a direct sum of 1 and
2-dimensional Hamiltonians Hk, each of which can be
simulated efficiently.

e.g. a 2D part Hk on rows i and f (i, 1) can be simulated
using the Solovay-Kitaev theorem to implement e−iHkt on
the space spanned by |i〉, |f (i, 1)〉.

Claim: Any d-sparse Hamiltonian can be decomposed as a
sum of poly(d,n) 1-sparse Hamiltonians. This
decomposition can be found efficiently.

∗

∗ ∗ ∗
∗ ∗
∗ ∗

=

∗

∗

∗

+

 ∗
∗

∗

+

 ∗
∗

Simulation of sparse Hamiltonians (sketch)

Thus H is equivalent to a direct sum of 1 and
2-dimensional Hamiltonians Hk, each of which can be
simulated efficiently.

e.g. a 2D part Hk on rows i and f (i, 1) can be simulated
using the Solovay-Kitaev theorem to implement e−iHkt on
the space spanned by |i〉, |f (i, 1)〉.

Claim: Any d-sparse Hamiltonian can be decomposed as a
sum of poly(d,n) 1-sparse Hamiltonians. This
decomposition can be found efficiently.

∗

∗ ∗ ∗
∗ ∗
∗ ∗

=

∗

∗

∗

+

 ∗
∗

∗

+

 ∗
∗

Simulation of sparse Hamiltonians (sketch)

Thus H is equivalent to a direct sum of 1 and
2-dimensional Hamiltonians Hk, each of which can be
simulated efficiently.

e.g. a 2D part Hk on rows i and f (i, 1) can be simulated
using the Solovay-Kitaev theorem to implement e−iHkt on
the space spanned by |i〉, |f (i, 1)〉.

Claim: Any d-sparse Hamiltonian can be decomposed as a
sum of poly(d,n) 1-sparse Hamiltonians. This
decomposition can be found efficiently.

∗

∗ ∗ ∗
∗ ∗
∗ ∗

 =

∗

∗

∗

+

 ∗
∗

∗

+

 ∗
∗

Application: Simulating continuous-time
quantum walks

A quantum walk is the quantum analogue of a classical
random walk.

A continuous-time quantum walk for time t on a graph G
with adjacency matrix A is simply the application of the
unitary operator e−iAt.

G = A =

0 1 0 1 1
1 0 1 0 1
0 1 0 1 1
1 0 1 0 0
1 1 1 0 0

We consider quantum walks on graphs G in a black-box
model where, given a vertex i, we can query an oracle
f (i, j) to learn the j’th neighbour of i.
If G is sparse (has maximum degree O(log N)) then the
above algorithm gives an efficient (i.e. poly(log N)-time)
simulation of a quantum walk on G.

Application: Simulating continuous-time
quantum walks

A quantum walk is the quantum analogue of a classical
random walk.
A continuous-time quantum walk for time t on a graph G
with adjacency matrix A is simply the application of the
unitary operator e−iAt.

G = A =

0 1 0 1 1
1 0 1 0 1
0 1 0 1 1
1 0 1 0 0
1 1 1 0 0

We consider quantum walks on graphs G in a black-box
model where, given a vertex i, we can query an oracle
f (i, j) to learn the j’th neighbour of i.
If G is sparse (has maximum degree O(log N)) then the
above algorithm gives an efficient (i.e. poly(log N)-time)
simulation of a quantum walk on G.

Application: Simulating continuous-time
quantum walks

A quantum walk is the quantum analogue of a classical
random walk.
A continuous-time quantum walk for time t on a graph G
with adjacency matrix A is simply the application of the
unitary operator e−iAt.

G = A =

0 1 0 1 1
1 0 1 0 1
0 1 0 1 1
1 0 1 0 0
1 1 1 0 0

We consider quantum walks on graphs G in a black-box
model where, given a vertex i, we can query an oracle
f (i, j) to learn the j’th neighbour of i.

If G is sparse (has maximum degree O(log N)) then the
above algorithm gives an efficient (i.e. poly(log N)-time)
simulation of a quantum walk on G.

Application: Simulating continuous-time
quantum walks

A quantum walk is the quantum analogue of a classical
random walk.
A continuous-time quantum walk for time t on a graph G
with adjacency matrix A is simply the application of the
unitary operator e−iAt.

G = A =

0 1 0 1 1
1 0 1 0 1
0 1 0 1 1
1 0 1 0 0
1 1 1 0 0

We consider quantum walks on graphs G in a black-box
model where, given a vertex i, we can query an oracle
f (i, j) to learn the j’th neighbour of i.
If G is sparse (has maximum degree O(log N)) then the
above algorithm gives an efficient (i.e. poly(log N)-time)
simulation of a quantum walk on G.

Quantum walk on the glued trees graph

Consider the graph formed by gluing two binary trees with N
vertices together, e.g.:

Quantum walk on the glued trees graph

Now add a random cycle in the middle:

Quantum walk on the glued trees graph

Theorem [Childs et al 0209131]

A continuous-time quantum walk which starts at the
entrance (on the LHS) and runs for time O(log N) finds
the exit (on the RHS) with probability at least
1/poly(log N).

Any classical algorithm given black-box access to the
graph requires Ω(N1/6) queries to find the exit.

Basic idea behind proof:

By symmetry, the quantum walk is restricted to the
subspace spanned by uniform superpositions of vertices
in each column.
On this subspace, the graph looks like a line with a defect
in the middle. The walk moves from one end to the other
in O(log N) time.
But any classical algorithm gets stuck in the middle.

Quantum walk on the glued trees graph

Theorem [Childs et al 0209131]

A continuous-time quantum walk which starts at the
entrance (on the LHS) and runs for time O(log N) finds
the exit (on the RHS) with probability at least
1/poly(log N).
Any classical algorithm given black-box access to the
graph requires Ω(N1/6) queries to find the exit.

Basic idea behind proof:

By symmetry, the quantum walk is restricted to the
subspace spanned by uniform superpositions of vertices
in each column.
On this subspace, the graph looks like a line with a defect
in the middle. The walk moves from one end to the other
in O(log N) time.
But any classical algorithm gets stuck in the middle.

Quantum walk on the glued trees graph

Theorem [Childs et al 0209131]

A continuous-time quantum walk which starts at the
entrance (on the LHS) and runs for time O(log N) finds
the exit (on the RHS) with probability at least
1/poly(log N).
Any classical algorithm given black-box access to the
graph requires Ω(N1/6) queries to find the exit.

Basic idea behind proof:

By symmetry, the quantum walk is restricted to the
subspace spanned by uniform superpositions of vertices
in each column.

On this subspace, the graph looks like a line with a defect
in the middle. The walk moves from one end to the other
in O(log N) time.
But any classical algorithm gets stuck in the middle.

Quantum walk on the glued trees graph

Theorem [Childs et al 0209131]

A continuous-time quantum walk which starts at the
entrance (on the LHS) and runs for time O(log N) finds
the exit (on the RHS) with probability at least
1/poly(log N).
Any classical algorithm given black-box access to the
graph requires Ω(N1/6) queries to find the exit.

Basic idea behind proof:

By symmetry, the quantum walk is restricted to the
subspace spanned by uniform superpositions of vertices
in each column.
On this subspace, the graph looks like a line with a defect
in the middle. The walk moves from one end to the other
in O(log N) time.

But any classical algorithm gets stuck in the middle.

Quantum walk on the glued trees graph

Theorem [Childs et al 0209131]

A continuous-time quantum walk which starts at the
entrance (on the LHS) and runs for time O(log N) finds
the exit (on the RHS) with probability at least
1/poly(log N).
Any classical algorithm given black-box access to the
graph requires Ω(N1/6) queries to find the exit.

Basic idea behind proof:

By symmetry, the quantum walk is restricted to the
subspace spanned by uniform superpositions of vertices
in each column.
On this subspace, the graph looks like a line with a defect
in the middle. The walk moves from one end to the other
in O(log N) time.
But any classical algorithm gets stuck in the middle.

Quantum walk on the glued trees graph

Using Hamiltonian simulation allows the above algorithm to
be translated efficiently into the standard quantum circuit
model and implies an exponential oracle separation between
quantum and classical computation.

Other applications of continuous-time quantum walks include:

Spatial search [Childs and Goldstone 0306054]

Quadratic speedup for evaluation of AND-OR (game)
trees [Farhi et al 0702144] [Childs et al 0702160]

Quantum walk on the glued trees graph

Using Hamiltonian simulation allows the above algorithm to
be translated efficiently into the standard quantum circuit
model and implies an exponential oracle separation between
quantum and classical computation.

Other applications of continuous-time quantum walks include:

Spatial search [Childs and Goldstone 0306054]

Quadratic speedup for evaluation of AND-OR (game)
trees [Farhi et al 0702144] [Childs et al 0702160]

Simulation of sparse Hamiltonians

More recently, it has been shown that d-sparse Hamiltonians
can be solved up to error ε with. . .

(d2(d + log∗ n)‖H‖t)1+o(1) uses of f , via decomposing H in
terms of galaxies [Childs and Kothari 1003.3683].

O(‖H‖t/
√
ε+ d‖H‖max) uses of f , where

‖H‖max = maxi,j |Hij|, via quantum walks [Berry and Childs
0910.4157].

Application: “Solving” linear equations
A basic task in mathematics and engineering:

Solving linear equations

Given access to a d-sparse N ×N matrix A, and b ∈ RN, output
x such that Ax = b.

One “quantum” way of thinking about the problem:

“Solving” linear equations

Given the ability to produce the quantum state |b〉 =
∑N

i=1 bi|i〉,
and access to A as above, produce the state |x〉 =

∑N
i=1 xi|i〉.

Theorem: If A has condition number κ (= ‖A−1‖‖A‖), |x〉 can
be approximately produced in time poly(log N, d, κ) [Harrow et
al 0811.3171].

Later improved to time O(κ log3 κpoly(d) log N) [Ambainis
1010.4458].

Application: “Solving” linear equations
A basic task in mathematics and engineering:

Solving linear equations

Given access to a d-sparse N ×N matrix A, and b ∈ RN, output
x such that Ax = b.

One “quantum” way of thinking about the problem:

“Solving” linear equations

Given the ability to produce the quantum state |b〉 =
∑N

i=1 bi|i〉,
and access to A as above, produce the state |x〉 =

∑N
i=1 xi|i〉.

Theorem: If A has condition number κ (= ‖A−1‖‖A‖), |x〉 can
be approximately produced in time poly(log N, d, κ) [Harrow et
al 0811.3171].

Later improved to time O(κ log3 κpoly(d) log N) [Ambainis
1010.4458].

Application: “Solving” linear equations
A basic task in mathematics and engineering:

Solving linear equations

Given access to a d-sparse N ×N matrix A, and b ∈ RN, output
x such that Ax = b.

One “quantum” way of thinking about the problem:

“Solving” linear equations

Given the ability to produce the quantum state |b〉 =
∑N

i=1 bi|i〉,
and access to A as above, produce the state |x〉 =

∑N
i=1 xi|i〉.

Theorem: If A has condition number κ (= ‖A−1‖‖A‖), |x〉 can
be approximately produced in time poly(log N, d, κ) [Harrow et
al 0811.3171].

Later improved to time O(κ log3 κpoly(d) log N) [Ambainis
1010.4458].

Application: “Solving” linear equations
A basic task in mathematics and engineering:

Solving linear equations

Given access to a d-sparse N ×N matrix A, and b ∈ RN, output
x such that Ax = b.

One “quantum” way of thinking about the problem:

“Solving” linear equations

Given the ability to produce the quantum state |b〉 =
∑N

i=1 bi|i〉,
and access to A as above, produce the state |x〉 =

∑N
i=1 xi|i〉.

Theorem: If A has condition number κ (= ‖A−1‖‖A‖), |x〉 can
be approximately produced in time poly(log N, d, κ) [Harrow et
al 0811.3171].

Later improved to time O(κ log3 κpoly(d) log N) [Ambainis
1010.4458].

The algorithm (sketch)

Assume that A is Hermitian and has all eigenvalues λi in the
range 1/κ 6 λi 6 1. Some initial observations:

1 We can write |b〉 in the eigenbasis of A: |b〉 =
∑

i ci|vi〉.

2 Observe that |x〉 =
∑

i ciλ
−1
i |vi〉.

3 Also observe that, using Hamiltonian simulation, we can
approximate the operator e−iAt for arbitrary t in time
poly(log N, d, t).

The algorithm (sketch)

Assume that A is Hermitian and has all eigenvalues λi in the
range 1/κ 6 λi 6 1. Some initial observations:

1 We can write |b〉 in the eigenbasis of A: |b〉 =
∑

i ci|vi〉.

2 Observe that |x〉 =
∑

i ciλ
−1
i |vi〉.

3 Also observe that, using Hamiltonian simulation, we can
approximate the operator e−iAt for arbitrary t in time
poly(log N, d, t).

The algorithm (sketch)

Assume that A is Hermitian and has all eigenvalues λi in the
range 1/κ 6 λi 6 1. Some initial observations:

1 We can write |b〉 in the eigenbasis of A: |b〉 =
∑

i ci|vi〉.

2 Observe that |x〉 =
∑

i ciλ
−1
i |vi〉.

3 Also observe that, using Hamiltonian simulation, we can
approximate the operator e−iAt for arbitrary t in time
poly(log N, d, t).

The algorithm (sketch)

1 Prepare the state |b〉 =
∑

i ci|vi〉.

2 Apply phase estimation to the operator e−iAt to produce∣∣b ′〉 = ∑
i

ci|vi〉
∣∣∣λ̃i

〉
.

3 Add an ancilla qubit and produce

∣∣b ′′〉 = ∑
i

ci|vi〉
∣∣∣λ̃i

〉(1

κλ̃i
|1〉+

√
1 −

1

κ2λ̃i
2 |0〉

)
.

4 Measure the ancilla; if we get 1, we have produced a state
proportional to ∑

i

ciλ̃i
−1

|vi〉
∣∣∣λ̃i

〉
.

5 Perform phase estimation backwards to uncompute λ̃i and
thus produce a state close to |x〉.

The algorithm (sketch)

1 Prepare the state |b〉 =
∑

i ci|vi〉.
2 Apply phase estimation to the operator e−iAt to produce∣∣b ′〉 = ∑

i

ci|vi〉
∣∣∣λ̃i

〉
.

3 Add an ancilla qubit and produce

∣∣b ′′〉 = ∑
i

ci|vi〉
∣∣∣λ̃i

〉(1

κλ̃i
|1〉+

√
1 −

1

κ2λ̃i
2 |0〉

)
.

4 Measure the ancilla; if we get 1, we have produced a state
proportional to ∑

i

ciλ̃i
−1

|vi〉
∣∣∣λ̃i

〉
.

5 Perform phase estimation backwards to uncompute λ̃i and
thus produce a state close to |x〉.

The algorithm (sketch)

1 Prepare the state |b〉 =
∑

i ci|vi〉.
2 Apply phase estimation to the operator e−iAt to produce∣∣b ′〉 = ∑

i

ci|vi〉
∣∣∣λ̃i

〉
.

3 Add an ancilla qubit and produce

∣∣b ′′〉 = ∑
i

ci|vi〉
∣∣∣λ̃i

〉(1

κλ̃i
|1〉+

√
1 −

1

κ2λ̃i
2 |0〉

)
.

4 Measure the ancilla; if we get 1, we have produced a state
proportional to ∑

i

ciλ̃i
−1

|vi〉
∣∣∣λ̃i

〉
.

5 Perform phase estimation backwards to uncompute λ̃i and
thus produce a state close to |x〉.

The algorithm (sketch)

1 Prepare the state |b〉 =
∑

i ci|vi〉.
2 Apply phase estimation to the operator e−iAt to produce∣∣b ′〉 = ∑

i

ci|vi〉
∣∣∣λ̃i

〉
.

3 Add an ancilla qubit and produce

∣∣b ′′〉 = ∑
i

ci|vi〉
∣∣∣λ̃i

〉(1

κλ̃i
|1〉+

√
1 −

1

κ2λ̃i
2 |0〉

)
.

4 Measure the ancilla; if we get 1, we have produced a state
proportional to ∑

i

ciλ̃i
−1

|vi〉
∣∣∣λ̃i

〉
.

5 Perform phase estimation backwards to uncompute λ̃i and
thus produce a state close to |x〉.

The algorithm (sketch)

1 Prepare the state |b〉 =
∑

i ci|vi〉.
2 Apply phase estimation to the operator e−iAt to produce∣∣b ′〉 = ∑

i

ci|vi〉
∣∣∣λ̃i

〉
.

3 Add an ancilla qubit and produce

∣∣b ′′〉 = ∑
i

ci|vi〉
∣∣∣λ̃i

〉(1

κλ̃i
|1〉+

√
1 −

1

κ2λ̃i
2 |0〉

)
.

4 Measure the ancilla; if we get 1, we have produced a state
proportional to ∑

i

ciλ̃i
−1

|vi〉
∣∣∣λ̃i

〉
.

5 Perform phase estimation backwards to uncompute λ̃i and
thus produce a state close to |x〉.

Notes on this algorithm
The algorithm (approximately) produces a state |x〉 such that
we can extract some information from |x〉. Is this useful?

We could use this to e.g. determine whether two sets of
linear equations have (approximately) the same solution –
not clear how to do this classically.
Achieving a similar runtime classically would imply that
BPP = BQP!

Further notes:

The dependence on κ can be improved using amplitude
amplification, but. . .
Any quantum algorithm needs time Ω(κ1−o(1)) unless
BQP = PSPACE.
More recent applications of this algorithm include:

“Solving” differential equations [Leyton and Osborne
0812.4423] [Berry 1010.2745]
Data fitting [Wiebe et al 1204.5242]

Notes on this algorithm
The algorithm (approximately) produces a state |x〉 such that
we can extract some information from |x〉. Is this useful?

We could use this to e.g. determine whether two sets of
linear equations have (approximately) the same solution –
not clear how to do this classically.

Achieving a similar runtime classically would imply that
BPP = BQP!

Further notes:

The dependence on κ can be improved using amplitude
amplification, but. . .
Any quantum algorithm needs time Ω(κ1−o(1)) unless
BQP = PSPACE.
More recent applications of this algorithm include:

“Solving” differential equations [Leyton and Osborne
0812.4423] [Berry 1010.2745]
Data fitting [Wiebe et al 1204.5242]

Notes on this algorithm
The algorithm (approximately) produces a state |x〉 such that
we can extract some information from |x〉. Is this useful?

We could use this to e.g. determine whether two sets of
linear equations have (approximately) the same solution –
not clear how to do this classically.
Achieving a similar runtime classically would imply that
BPP = BQP!

Further notes:

The dependence on κ can be improved using amplitude
amplification, but. . .
Any quantum algorithm needs time Ω(κ1−o(1)) unless
BQP = PSPACE.
More recent applications of this algorithm include:

“Solving” differential equations [Leyton and Osborne
0812.4423] [Berry 1010.2745]
Data fitting [Wiebe et al 1204.5242]

Notes on this algorithm
The algorithm (approximately) produces a state |x〉 such that
we can extract some information from |x〉. Is this useful?

We could use this to e.g. determine whether two sets of
linear equations have (approximately) the same solution –
not clear how to do this classically.
Achieving a similar runtime classically would imply that
BPP = BQP!

Further notes:

The dependence on κ can be improved using amplitude
amplification, but. . .

Any quantum algorithm needs time Ω(κ1−o(1)) unless
BQP = PSPACE.
More recent applications of this algorithm include:

“Solving” differential equations [Leyton and Osborne
0812.4423] [Berry 1010.2745]
Data fitting [Wiebe et al 1204.5242]

Notes on this algorithm
The algorithm (approximately) produces a state |x〉 such that
we can extract some information from |x〉. Is this useful?

We could use this to e.g. determine whether two sets of
linear equations have (approximately) the same solution –
not clear how to do this classically.
Achieving a similar runtime classically would imply that
BPP = BQP!

Further notes:

The dependence on κ can be improved using amplitude
amplification, but. . .
Any quantum algorithm needs time Ω(κ1−o(1)) unless
BQP = PSPACE.

More recent applications of this algorithm include:
“Solving” differential equations [Leyton and Osborne
0812.4423] [Berry 1010.2745]
Data fitting [Wiebe et al 1204.5242]

Notes on this algorithm
The algorithm (approximately) produces a state |x〉 such that
we can extract some information from |x〉. Is this useful?

We could use this to e.g. determine whether two sets of
linear equations have (approximately) the same solution –
not clear how to do this classically.
Achieving a similar runtime classically would imply that
BPP = BQP!

Further notes:

The dependence on κ can be improved using amplitude
amplification, but. . .
Any quantum algorithm needs time Ω(κ1−o(1)) unless
BQP = PSPACE.
More recent applications of this algorithm include:

“Solving” differential equations [Leyton and Osborne
0812.4423] [Berry 1010.2745]
Data fitting [Wiebe et al 1204.5242]

Grover’s algorithm

Problem
Given access to a function f : [n]→ {0, 1} such that f (i) = 1 if
and only if i ∈M, where |M| = εn, output j ∈M.

Write SM = span{|i〉 : i ∈M}, |ψ〉 = 1√
n

∑n
i=1 |i〉.

Grover’s algorithm: starting with |ψ〉, alternately reflect
about S⊥M and |ψ〉:

ref(|ψ〉) ref(S⊥M) ref(|ψ〉) ref(S⊥M) . . . ref(|ψ〉) ref(S⊥M),

where for a subspace S (and P the projector onto S)

ref(S) = 2P − I.

ref(S⊥M) is the operator mapping |i〉 7→ (−1)f(i)|i〉, which
can be implemented with one query to f .

Grover’s algorithm

Problem
Given access to a function f : [n]→ {0, 1} such that f (i) = 1 if
and only if i ∈M, where |M| = εn, output j ∈M.

Write SM = span{|i〉 : i ∈M}, |ψ〉 = 1√
n

∑n
i=1 |i〉.

Grover’s algorithm: starting with |ψ〉, alternately reflect
about S⊥M and |ψ〉:

ref(|ψ〉) ref(S⊥M) ref(|ψ〉) ref(S⊥M) . . . ref(|ψ〉) ref(S⊥M),

where for a subspace S (and P the projector onto S)

ref(S) = 2P − I.

ref(S⊥M) is the operator mapping |i〉 7→ (−1)f(i)|i〉, which
can be implemented with one query to f .

Grover’s algorithm

Problem
Given access to a function f : [n]→ {0, 1} such that f (i) = 1 if
and only if i ∈M, where |M| = εn, output j ∈M.

Write SM = span{|i〉 : i ∈M}, |ψ〉 = 1√
n

∑n
i=1 |i〉.

Grover’s algorithm: starting with |ψ〉, alternately reflect
about S⊥M and |ψ〉:

ref(|ψ〉) ref(S⊥M) ref(|ψ〉) ref(S⊥M) . . . ref(|ψ〉) ref(S⊥M),

where for a subspace S (and P the projector onto S)

ref(S) = 2P − I.

ref(S⊥M) is the operator mapping |i〉 7→ (−1)f(i)|i〉, which
can be implemented with one query to f .

Grover’s algorithm

Problem
Given access to a function f : [n]→ {0, 1} such that f (i) = 1 if
and only if i ∈M, where |M| = εn, output j ∈M.

Write SM = span{|i〉 : i ∈M}, |ψ〉 = 1√
n

∑n
i=1 |i〉.

Grover’s algorithm: starting with |ψ〉, alternately reflect
about S⊥M and |ψ〉:

ref(|ψ〉) ref(S⊥M) ref(|ψ〉) ref(S⊥M) . . . ref(|ψ〉) ref(S⊥M),

where for a subspace S (and P the projector onto S)

ref(S) = 2P − I.

ref(S⊥M) is the operator mapping |i〉 7→ (−1)f(i)|i〉, which
can be implemented with one query to f .

Grover’s algorithm

Claim 1: the state of the system remains in the 2D
subspace spanned by |ψ〉 and |µ〉 =

∑
i∈M |i〉.

Claim 2: within this subspace, ref(S⊥M) = ref(
∣∣µ⊥〉).

Claim 3: the composition of two reflections is a rotation:
ref(|ψ〉) ref(

∣∣µ⊥〉) rotates by angle 2φ from |ψ〉 to |µ〉,
where

sinφ = 〈ψ|µ〉 =
√
ε.

|µ〉

|ψ〉

φ ∣∣µ⊥〉

Thus the algorithm uses O(1/
√
ε) queries to reach |µ〉.

Grover’s algorithm

Claim 1: the state of the system remains in the 2D
subspace spanned by |ψ〉 and |µ〉 =

∑
i∈M |i〉.

Claim 2: within this subspace, ref(S⊥M) = ref(
∣∣µ⊥〉).

Claim 3: the composition of two reflections is a rotation:
ref(|ψ〉) ref(

∣∣µ⊥〉) rotates by angle 2φ from |ψ〉 to |µ〉,
where

sinφ = 〈ψ|µ〉 =
√
ε.

|µ〉

|ψ〉

φ ∣∣µ⊥〉

Thus the algorithm uses O(1/
√
ε) queries to reach |µ〉.

Grover’s algorithm

Claim 1: the state of the system remains in the 2D
subspace spanned by |ψ〉 and |µ〉 =

∑
i∈M |i〉.

Claim 2: within this subspace, ref(S⊥M) = ref(
∣∣µ⊥〉).

Claim 3: the composition of two reflections is a rotation:
ref(|ψ〉) ref(

∣∣µ⊥〉) rotates by angle 2φ from |ψ〉 to |µ〉,
where

sinφ = 〈ψ|µ〉 =
√
ε.

|µ〉

|ψ〉

φ ∣∣µ⊥〉

Thus the algorithm uses O(1/
√
ε) queries to reach |µ〉.

Grover’s algorithm

Claim 1: the state of the system remains in the 2D
subspace spanned by |ψ〉 and |µ〉 =

∑
i∈M |i〉.

Claim 2: within this subspace, ref(S⊥M) = ref(
∣∣µ⊥〉).

Claim 3: the composition of two reflections is a rotation:
ref(|ψ〉) ref(

∣∣µ⊥〉) rotates by angle 2φ from |ψ〉 to |µ〉,
where

sinφ = 〈ψ|µ〉 =
√
ε.

|µ〉

|ψ〉

φ ∣∣µ⊥〉

Thus the algorithm uses O(1/
√
ε) queries to reach |µ〉.

Grover’s algorithm

Claim 1: the state of the system remains in the 2D
subspace spanned by |ψ〉 and |µ〉 =

∑
i∈M |i〉.

Claim 2: within this subspace, ref(S⊥M) = ref(
∣∣µ⊥〉).

Claim 3: the composition of two reflections is a rotation:
ref(|ψ〉) ref(

∣∣µ⊥〉) rotates by angle 2φ from |ψ〉 to |µ〉,
where

sinφ = 〈ψ|µ〉 =
√
ε.

|µ〉

|ψ〉
φ ∣∣µ⊥〉

Thus the algorithm uses O(1/
√
ε) queries to reach |µ〉.

Grover’s algorithm

Claim 1: the state of the system remains in the 2D
subspace spanned by |ψ〉 and |µ〉 =

∑
i∈M |i〉.

Claim 2: within this subspace, ref(S⊥M) = ref(
∣∣µ⊥〉).

Claim 3: the composition of two reflections is a rotation:
ref(|ψ〉) ref(

∣∣µ⊥〉) rotates by angle 2φ from |ψ〉 to |µ〉,
where

sinφ = 〈ψ|µ〉 =
√
ε.

|µ〉

|ψ〉
φ ∣∣µ⊥〉

Thus the algorithm uses O(1/
√
ε) queries to reach |µ〉.

Grover’s algorithm

Claim 1: the state of the system remains in the 2D
subspace spanned by |ψ〉 and |µ〉 =

∑
i∈M |i〉.

Claim 2: within this subspace, ref(S⊥M) = ref(
∣∣µ⊥〉).

Claim 3: the composition of two reflections is a rotation:
ref(|ψ〉) ref(

∣∣µ⊥〉) rotates by angle 2φ from |ψ〉 to |µ〉,
where

sinφ = 〈ψ|µ〉 =
√
ε.

|µ〉

|ψ〉
φ ∣∣µ⊥〉

Thus the algorithm uses O(1/
√
ε) queries to reach |µ〉.

Grover’s algorithm

Claim 1: the state of the system remains in the 2D
subspace spanned by |ψ〉 and |µ〉 =

∑
i∈M |i〉.

Claim 2: within this subspace, ref(S⊥M) = ref(
∣∣µ⊥〉).

Claim 3: the composition of two reflections is a rotation:
ref(|ψ〉) ref(

∣∣µ⊥〉) rotates by angle 2φ from |ψ〉 to |µ〉,
where

sinφ = 〈ψ|µ〉 =
√
ε.

|µ〉

|ψ〉
φ ∣∣µ⊥〉

Thus the algorithm uses O(1/
√
ε) queries to reach |µ〉.

Grover’s algorithm

Claim 1: the state of the system remains in the 2D
subspace spanned by |ψ〉 and |µ〉 =

∑
i∈M |i〉.

Claim 2: within this subspace, ref(S⊥M) = ref(
∣∣µ⊥〉).

Claim 3: the composition of two reflections is a rotation:
ref(|ψ〉) ref(

∣∣µ⊥〉) rotates by angle 2φ from |ψ〉 to |µ〉,
where

sinφ = 〈ψ|µ〉 =
√
ε.

|µ〉

|ψ〉
φ ∣∣µ⊥〉

Thus the algorithm uses O(1/
√
ε) queries to reach |µ〉.

Element distinctness

Problem
Given a list of n integers, are they all distinct?

Classical complexity: Θ(n) queries.
Try using Grover’s algorithm on the set of all pairs:
O(
√

n2) = O(n).

Theorem [Ambainis 0311001]

Element Distinctness can be solved using O(n2/3) queries.

Time complexity is the same up to polylogarithmic factors.
Generalisation to finding a k-subset of [m]n satisfying any
property: uses O(nk/(k+1)) queries.
This bound is tight [Aaronson and Shi 0111102, 0112086] [Belovs
and Špalek 1204.5074, 1206.6528]

Element distinctness

Problem
Given a list of n integers, are they all distinct?

Classical complexity: Θ(n) queries.

Try using Grover’s algorithm on the set of all pairs:
O(
√

n2) = O(n).

Theorem [Ambainis 0311001]

Element Distinctness can be solved using O(n2/3) queries.

Time complexity is the same up to polylogarithmic factors.
Generalisation to finding a k-subset of [m]n satisfying any
property: uses O(nk/(k+1)) queries.
This bound is tight [Aaronson and Shi 0111102, 0112086] [Belovs
and Špalek 1204.5074, 1206.6528]

Element distinctness

Problem
Given a list of n integers, are they all distinct?

Classical complexity: Θ(n) queries.
Try using Grover’s algorithm on the set of all pairs:
O(
√

n2) = O(n).

Theorem [Ambainis 0311001]

Element Distinctness can be solved using O(n2/3) queries.

Time complexity is the same up to polylogarithmic factors.
Generalisation to finding a k-subset of [m]n satisfying any
property: uses O(nk/(k+1)) queries.
This bound is tight [Aaronson and Shi 0111102, 0112086] [Belovs
and Špalek 1204.5074, 1206.6528]

Element distinctness

Problem
Given a list of n integers, are they all distinct?

Classical complexity: Θ(n) queries.
Try using Grover’s algorithm on the set of all pairs:
O(
√

n2) = O(n).

Theorem [Ambainis 0311001]

Element Distinctness can be solved using O(n2/3) queries.

Time complexity is the same up to polylogarithmic factors.
Generalisation to finding a k-subset of [m]n satisfying any
property: uses O(nk/(k+1)) queries.
This bound is tight [Aaronson and Shi 0111102, 0112086] [Belovs
and Špalek 1204.5074, 1206.6528]

Element distinctness

Problem
Given a list of n integers, are they all distinct?

Classical complexity: Θ(n) queries.
Try using Grover’s algorithm on the set of all pairs:
O(
√

n2) = O(n).

Theorem [Ambainis 0311001]

Element Distinctness can be solved using O(n2/3) queries.

Time complexity is the same up to polylogarithmic factors.
Generalisation to finding a k-subset of [m]n satisfying any
property: uses O(nk/(k+1)) queries.
This bound is tight [Aaronson and Shi 0111102, 0112086] [Belovs
and Špalek 1204.5074, 1206.6528]

Element distinctness by local search

Idea: try to solve this problem by search on the Johnson graph.

This is the graph whose vertices are all r-subsets of [n].
Vertices S, T are connected if |S ∪ T| = r − 1.

e.g. n = 4, r = 2:

{1, 2}

{1, 3}{1, 4}

{3, 4}

{2, 3}{2, 4}

Fraction of marked vertices: at least
(n−2

r−2

)
/
(n

r

)
= Θ(r2/n2).

Try Grover again: O(
√

n2/r2 × r) = O(n).

Element distinctness by local search

Idea: try to solve this problem by search on the Johnson graph.

This is the graph whose vertices are all r-subsets of [n].
Vertices S, T are connected if |S ∪ T| = r − 1.

e.g. n = 4, r = 2:

{1, 2}

{1, 3}{1, 4}

{3, 4}

{2, 3}{2, 4}

Fraction of marked vertices: at least
(n−2

r−2

)
/
(n

r

)
= Θ(r2/n2).

Try Grover again: O(
√

n2/r2 × r) = O(n).

Element distinctness by local search

Idea: try to solve this problem by search on the Johnson graph.

This is the graph whose vertices are all r-subsets of [n].
Vertices S, T are connected if |S ∪ T| = r − 1.

e.g. n = 4, r = 2:

{1, 2}

{1, 3}{1, 4}

{3, 4}

{2, 3}{2, 4}

Fraction of marked vertices: at least
(n−2

r−2

)
/
(n

r

)
= Θ(r2/n2).

Try Grover again: O(
√

n2/r2 × r) = O(n).

Element distinctness by local search

Idea: try to solve this problem by search on the Johnson graph.

This is the graph whose vertices are all r-subsets of [n].
Vertices S, T are connected if |S ∪ T| = r − 1.

e.g. n = 4, r = 2:

{1, 2}

{1, 3}{1, 4}

{3, 4}

{2, 3}{2, 4}

Fraction of marked vertices: at least
(n−2

r−2

)
/
(n

r

)
= Θ(r2/n2).

Try Grover again: O(
√

n2/r2 × r) = O(n).

Search by quantum walk

Write
|ψ〉 =

∑
S,|S|=r

|S〉, |µ〉 =
∑

S,|S|=r,S good

|S〉,

where S is good if it contains duplicate elements.

Grover’s algorithm alternates between:
Reflections about |ψ〉 (free)
Reflections about

∣∣µ⊥〉 (costly).
Let’s think about this complexity differently.

Associate each vertex S of the graph with some data d(S), such
that given the state |S〉|d(S)〉, the checking step is free (i.e.
requires no further queries).

For element distinctness, d(S) is the subset of the input
elements corresponding to S.

Search by quantum walk

Write
|ψ〉 =

∑
S,|S|=r

|S〉, |µ〉 =
∑

S,|S|=r,S good

|S〉,

where S is good if it contains duplicate elements.

Grover’s algorithm alternates between:
Reflections about |ψ〉 (free)
Reflections about

∣∣µ⊥〉 (costly).
Let’s think about this complexity differently.

Associate each vertex S of the graph with some data d(S), such
that given the state |S〉|d(S)〉, the checking step is free (i.e.
requires no further queries).

For element distinctness, d(S) is the subset of the input
elements corresponding to S.

Search by quantum walk

Write
|ψ〉 =

∑
S,|S|=r

|S〉, |µ〉 =
∑

S,|S|=r,S good

|S〉,

where S is good if it contains duplicate elements.

Grover’s algorithm alternates between:
Reflections about |ψ〉 (free)
Reflections about

∣∣µ⊥〉 (costly).
Let’s think about this complexity differently.

Associate each vertex S of the graph with some data d(S), such
that given the state |S〉|d(S)〉, the checking step is free (i.e.
requires no further queries).

For element distinctness, d(S) is the subset of the input
elements corresponding to S.

Search by quantum walk

Write

|ψd〉 =
∑

S,|S|=r

|S〉|d(S)〉, |µd〉 =
∑

S,|S|=r,S good

|S〉|d(S)〉.

We would like to rotate between |ψd〉 and |µd〉.

We can construct |ψd〉 using r queries.

So we can reflect about |ψd〉 using 2r queries.

As in Grover’s algorithm, reflecting about
∣∣µ⊥d 〉 can be done by

checking whether d(S) contains any duplicates.

So this step does not require any queries.

Can we speed up the first step?

Search by quantum walk

Write

|ψd〉 =
∑

S,|S|=r

|S〉|d(S)〉, |µd〉 =
∑

S,|S|=r,S good

|S〉|d(S)〉.

We would like to rotate between |ψd〉 and |µd〉.

We can construct |ψd〉 using r queries.

So we can reflect about |ψd〉 using 2r queries.

As in Grover’s algorithm, reflecting about
∣∣µ⊥d 〉 can be done by

checking whether d(S) contains any duplicates.

So this step does not require any queries.

Can we speed up the first step?

Search by quantum walk

Write

|ψd〉 =
∑

S,|S|=r

|S〉|d(S)〉, |µd〉 =
∑

S,|S|=r,S good

|S〉|d(S)〉.

We would like to rotate between |ψd〉 and |µd〉.

We can construct |ψd〉 using r queries.

So we can reflect about |ψd〉 using 2r queries.

As in Grover’s algorithm, reflecting about
∣∣µ⊥d 〉 can be done by

checking whether d(S) contains any duplicates.

So this step does not require any queries.

Can we speed up the first step?

Search by quantum walk

Write

|ψd〉 =
∑

S,|S|=r

|S〉|d(S)〉, |µd〉 =
∑

S,|S|=r,S good

|S〉|d(S)〉.

We would like to rotate between |ψd〉 and |µd〉.

We can construct |ψd〉 using r queries.

So we can reflect about |ψd〉 using 2r queries.

As in Grover’s algorithm, reflecting about
∣∣µ⊥d 〉 can be done by

checking whether d(S) contains any duplicates.

So this step does not require any queries.

Can we speed up the first step?

Markov chains

A Markov chain M = (pij) is a stochastic linear map
Rn → Rn.
Equivalently: a random walk on a directed graph.

0.3 0.5 0.2 0
0.1 0 0 0.9
0.7 0 0 0.3
0 0 0 1

 0.3 1
0.5

0.2

0.9

0.7
0.3

0.1

M is said to be:

irreducible if any vertex can be reached from any other
vertex;
ergodic if it is irreducible and aperiodic;
symmetric if pij = pji.

Markov chains

A Markov chain M = (pij) is a stochastic linear map
Rn → Rn.
Equivalently: a random walk on a directed graph.

0.3 0.5 0.2 0
0.1 0 0 0.9
0.7 0 0 0.3
0 0 0 1

 0.3 1
0.5

0.2

0.9

0.7
0.3

0.1

M is said to be:

irreducible if any vertex can be reached from any other
vertex;
ergodic if it is irreducible and aperiodic;
symmetric if pij = pji.

Markov chains

Let M have eigenvalues λ1 > λ2 > . . . λn.

If M is ergodic, it has a unique stationary distribution π,
i.e. an eigenvector with eigenvalue 1.
If M is symmetric, π is the uniform distribution.
The eigenvalue gap is δ = 1 − maxi>1 |λi|.

Classical mixing
Applying O(1/δ) steps of M to an arbitrary initial distribution
is sufficient to approximately produce the distribution π.

Markov chains

Let M have eigenvalues λ1 > λ2 > . . . λn.

If M is ergodic, it has a unique stationary distribution π,
i.e. an eigenvector with eigenvalue 1.
If M is symmetric, π is the uniform distribution.
The eigenvalue gap is δ = 1 − maxi>1 |λi|.

Classical mixing
Applying O(1/δ) steps of M to an arbitrary initial distribution
is sufficient to approximately produce the distribution π.

Bipartite quantum walks

Given an (ergodic, symmetric) Markov chain M = (pxy), define

|px〉 =
∑

y

√
pxy|y〉

and set
X = span{|x〉|px〉}, Y = span{

∣∣py
〉
|y〉}.

W = ref(Y) ref(X) is “the” quantum walk corresponding to M.

Crucial fact [Szegedy 0401053]

The unique eigenvector of W with eigenvalue 1 is

|π〉 =
∑

x

√
πx|x〉|px〉.

For each singular value cos(θ) of M, θ ∈ [0,π/2], W has
corresponding eigenvalues e±2iθ; all other eigenvalues are −1.

Bipartite quantum walks

Given an (ergodic, symmetric) Markov chain M = (pxy), define

|px〉 =
∑

y

√
pxy|y〉

and set
X = span{|x〉|px〉}, Y = span{

∣∣py
〉
|y〉}.

W = ref(Y) ref(X) is “the” quantum walk corresponding to M.

Crucial fact [Szegedy 0401053]

The unique eigenvector of W with eigenvalue 1 is

|π〉 =
∑

x

√
πx|x〉|px〉.

For each singular value cos(θ) of M, θ ∈ [0,π/2], W has
corresponding eigenvalues e±2iθ; all other eigenvalues are −1.

Bipartite quantum walks

Given an (ergodic, symmetric) Markov chain M = (pxy), define

|px〉 =
∑

y

√
pxy|y〉

and set
X = span{|x〉|px〉}, Y = span{

∣∣py
〉
|y〉}.

W = ref(Y) ref(X) is “the” quantum walk corresponding to M.

Crucial fact [Szegedy 0401053]

The unique eigenvector of W with eigenvalue 1 is

|π〉 =
∑

x

√
πx|x〉|px〉.

For each singular value cos(θ) of M, θ ∈ [0,π/2], W has
corresponding eigenvalues e±2iθ; all other eigenvalues are −1.

Bipartite quantum walks

Now |1 − e±2iθ| =
√

2(1 − cos(2θ)) > 2
√

1 − cos θ > 2
√
δ.

So, using phase estimation, we can distinguish between
the stationary state |π〉 and any state orthogonal to |π〉
using O(1/

√
δ) steps of W.

This implies that we can approximately implement the
operation ref(|πd〉) using O(1/

√
δ) queries!

Back to element distinctness:

For the Johnson graph, eigenvalue gap δ = Θ(1/r).
Thus the overall complexity of the quantum walk
algorithm for element distinctness is

O(r +
√

n2/r2 ×
√

r) = O(r + n/
√

r).

Taking r = O(n2/3) we get a complexity of O(n2/3).

Bipartite quantum walks

Now |1 − e±2iθ| =
√

2(1 − cos(2θ)) > 2
√

1 − cos θ > 2
√
δ.

So, using phase estimation, we can distinguish between
the stationary state |π〉 and any state orthogonal to |π〉
using O(1/

√
δ) steps of W.

This implies that we can approximately implement the
operation ref(|πd〉) using O(1/

√
δ) queries!

Back to element distinctness:

For the Johnson graph, eigenvalue gap δ = Θ(1/r).
Thus the overall complexity of the quantum walk
algorithm for element distinctness is

O(r +
√

n2/r2 ×
√

r) = O(r + n/
√

r).

Taking r = O(n2/3) we get a complexity of O(n2/3).

Bipartite quantum walks

Now |1 − e±2iθ| =
√

2(1 − cos(2θ)) > 2
√

1 − cos θ > 2
√
δ.

So, using phase estimation, we can distinguish between
the stationary state |π〉 and any state orthogonal to |π〉
using O(1/

√
δ) steps of W.

This implies that we can approximately implement the
operation ref(|πd〉) using O(1/

√
δ) queries!

Back to element distinctness:

For the Johnson graph, eigenvalue gap δ = Θ(1/r).
Thus the overall complexity of the quantum walk
algorithm for element distinctness is

O(r +
√

n2/r2 ×
√

r) = O(r + n/
√

r).

Taking r = O(n2/3) we get a complexity of O(n2/3).

Bipartite quantum walks

Now |1 − e±2iθ| =
√

2(1 − cos(2θ)) > 2
√

1 − cos θ > 2
√
δ.

So, using phase estimation, we can distinguish between
the stationary state |π〉 and any state orthogonal to |π〉
using O(1/

√
δ) steps of W.

This implies that we can approximately implement the
operation ref(|πd〉) using O(1/

√
δ) queries!

Back to element distinctness:

For the Johnson graph, eigenvalue gap δ = Θ(1/r).

Thus the overall complexity of the quantum walk
algorithm for element distinctness is

O(r +
√

n2/r2 ×
√

r) = O(r + n/
√

r).

Taking r = O(n2/3) we get a complexity of O(n2/3).

Bipartite quantum walks

Now |1 − e±2iθ| =
√

2(1 − cos(2θ)) > 2
√

1 − cos θ > 2
√
δ.

So, using phase estimation, we can distinguish between
the stationary state |π〉 and any state orthogonal to |π〉
using O(1/

√
δ) steps of W.

This implies that we can approximately implement the
operation ref(|πd〉) using O(1/

√
δ) queries!

Back to element distinctness:

For the Johnson graph, eigenvalue gap δ = Θ(1/r).
Thus the overall complexity of the quantum walk
algorithm for element distinctness is

O(r +
√

n2/r2 ×
√

r) = O(r + n/
√

r).

Taking r = O(n2/3) we get a complexity of O(n2/3).

Bipartite quantum walks

Now |1 − e±2iθ| =
√

2(1 − cos(2θ)) > 2
√

1 − cos θ > 2
√
δ.

So, using phase estimation, we can distinguish between
the stationary state |π〉 and any state orthogonal to |π〉
using O(1/

√
δ) steps of W.

This implies that we can approximately implement the
operation ref(|πd〉) using O(1/

√
δ) queries!

Back to element distinctness:

For the Johnson graph, eigenvalue gap δ = Θ(1/r).
Thus the overall complexity of the quantum walk
algorithm for element distinctness is

O(r +
√

n2/r2 ×
√

r) = O(r + n/
√

r).

Taking r = O(n2/3) we get a complexity of O(n2/3).

General search problems

More generally, for any search problem of this form we have:

Theorem [Magniez et al 0608026]

A marked element can be found with cost O(S+ 1√
ε
(1√
δ

U+C)).

where

S is the setup cost to construct
∑

x
√
πx|x〉|d(x)〉;

U is the update cost to perform one step of the walk W;
C is the checking cost to determine if x is marked.

NB: prior important quantum walk algorithms by [Szegedy
0401053], [Ambainis 0311001] are subtly different. . .

General search problems

More generally, for any search problem of this form we have:

Theorem [Magniez et al 0608026]

A marked element can be found with cost O(S+ 1√
ε
(1√
δ

U+C)).

where

S is the setup cost to construct
∑

x
√
πx|x〉|d(x)〉;

U is the update cost to perform one step of the walk W;
C is the checking cost to determine if x is marked.

NB: prior important quantum walk algorithms by [Szegedy
0401053], [Ambainis 0311001] are subtly different. . .

Some examples
The above framework lends itself to many different search
problems, such as:

Finding a triangle in a graph: O(n1.3) queries, vs. classical
O(n2) [Magniez et al 0310134]

Matrix product verification: O(n5/3) queries, vs. classical
O(n2) [Buhrman and Špalek 0409035]

 1 0 −1
0 2 3
−2 0 1

×
 0 5 −2
−1 1 0
1 1 1

 ?
=

−1 4 −3
1 5 4
1 −9 5

Testing group commutativity: O(n2/3 log n) queries, vs.
classical O(n) [Magniez and Nayak 0506265]

Some examples
The above framework lends itself to many different search
problems, such as:

Finding a triangle in a graph: O(n1.3) queries, vs. classical
O(n2) [Magniez et al 0310134]

Matrix product verification: O(n5/3) queries, vs. classical
O(n2) [Buhrman and Špalek 0409035]

 1 0 −1
0 2 3
−2 0 1

×
 0 5 −2
−1 1 0
1 1 1

 ?
=

−1 4 −3
1 5 4
1 −9 5

Testing group commutativity: O(n2/3 log n) queries, vs.
classical O(n) [Magniez and Nayak 0506265]

Some examples
The above framework lends itself to many different search
problems, such as:

Finding a triangle in a graph: O(n1.3) queries, vs. classical
O(n2) [Magniez et al 0310134]

Matrix product verification: O(n5/3) queries, vs. classical
O(n2) [Buhrman and Špalek 0409035]

 1 0 −1
0 2 3
−2 0 1

×
 0 5 −2
−1 1 0
1 1 1

 ?
=

−1 4 −3
1 5 4
1 −9 5

Testing group commutativity: O(n2/3 log n) queries, vs.
classical O(n) [Magniez and Nayak 0506265]

Some examples
The above framework lends itself to many different search
problems, such as:

Finding a triangle in a graph: O(n1.3) queries, vs. classical
O(n2) [Magniez et al 0310134]

Matrix product verification: O(n5/3) queries, vs. classical
O(n2) [Buhrman and Špalek 0409035]

 1 0 −1
0 2 3
−2 0 1

×
 0 5 −2
−1 1 0
1 1 1

 ?
=

−1 4 −3
1 5 4
1 −9 5

Testing group commutativity: O(n2/3 log n) queries, vs.
classical O(n) [Magniez and Nayak 0506265]

Some examples
The above framework lends itself to many different search
problems, such as:

Finding a triangle in a graph: O(n1.3) queries, vs. classical
O(n2) [Magniez et al 0310134]

Matrix product verification: O(n5/3) queries, vs. classical
O(n2) [Buhrman and Špalek 0409035]

 1 0 −1
0 2 3
−2 0 1

×
 0 5 −2
−1 1 0
1 1 1

 ?
=

−1 4 −3
1 5 4
1 −9 5

Testing group commutativity: O(n2/3 log n) queries, vs.
classical O(n) [Magniez and Nayak 0506265]

Learning graphs
Learning graphs can be seen as a far-reaching way of
generalising the element distinctness algorithm.

Definition [Belovs 1105.4024]

A learning graph G is a directed acyclic graph with vertices
labelled by subsets of [n]. It has edges of the form S→ S ∪ {j}
for some j ∈ [n]\S. Each edge e has a weight w(e) > 0.

Let f : [m]n → {0, 1} be a function we want to compute.
Each x such that f (x) = 1 is associated with a flow on G,
where a flow is a function px(e) assigning intensities to
edges such that:

The source of the flow is ∅. The sum of the intensities of its
outgoing edges equals 1.
Every vertex that contains a 1-certificate of f is a sink.
For all other vertices, the sum of the intensities of the
outgoing edges equals the sum of the intensities of the
incoming edges.

Learning graphs
Learning graphs can be seen as a far-reaching way of
generalising the element distinctness algorithm.

Definition [Belovs 1105.4024]

A learning graph G is a directed acyclic graph with vertices
labelled by subsets of [n]. It has edges of the form S→ S ∪ {j}
for some j ∈ [n]\S. Each edge e has a weight w(e) > 0.

Let f : [m]n → {0, 1} be a function we want to compute.
Each x such that f (x) = 1 is associated with a flow on G,
where a flow is a function px(e) assigning intensities to
edges such that:

The source of the flow is ∅. The sum of the intensities of its
outgoing edges equals 1.
Every vertex that contains a 1-certificate of f is a sink.
For all other vertices, the sum of the intensities of the
outgoing edges equals the sum of the intensities of the
incoming edges.

Learning graphs
Learning graphs can be seen as a far-reaching way of
generalising the element distinctness algorithm.

Definition [Belovs 1105.4024]

A learning graph G is a directed acyclic graph with vertices
labelled by subsets of [n]. It has edges of the form S→ S ∪ {j}
for some j ∈ [n]\S. Each edge e has a weight w(e) > 0.

Let f : [m]n → {0, 1} be a function we want to compute.

Each x such that f (x) = 1 is associated with a flow on G,
where a flow is a function px(e) assigning intensities to
edges such that:

The source of the flow is ∅. The sum of the intensities of its
outgoing edges equals 1.
Every vertex that contains a 1-certificate of f is a sink.
For all other vertices, the sum of the intensities of the
outgoing edges equals the sum of the intensities of the
incoming edges.

Learning graphs
Learning graphs can be seen as a far-reaching way of
generalising the element distinctness algorithm.

Definition [Belovs 1105.4024]

A learning graph G is a directed acyclic graph with vertices
labelled by subsets of [n]. It has edges of the form S→ S ∪ {j}
for some j ∈ [n]\S. Each edge e has a weight w(e) > 0.

Let f : [m]n → {0, 1} be a function we want to compute.
Each x such that f (x) = 1 is associated with a flow on G,
where a flow is a function px(e) assigning intensities to
edges such that:

The source of the flow is ∅. The sum of the intensities of its
outgoing edges equals 1.
Every vertex that contains a 1-certificate of f is a sink.
For all other vertices, the sum of the intensities of the
outgoing edges equals the sum of the intensities of the
incoming edges.

Learning graphs
Learning graphs can be seen as a far-reaching way of
generalising the element distinctness algorithm.

Definition [Belovs 1105.4024]

A learning graph G is a directed acyclic graph with vertices
labelled by subsets of [n]. It has edges of the form S→ S ∪ {j}
for some j ∈ [n]\S. Each edge e has a weight w(e) > 0.

Let f : [m]n → {0, 1} be a function we want to compute.
Each x such that f (x) = 1 is associated with a flow on G,
where a flow is a function px(e) assigning intensities to
edges such that:

The source of the flow is ∅. The sum of the intensities of its
outgoing edges equals 1.
Every vertex that contains a 1-certificate of f is a sink.
For all other vertices, the sum of the intensities of the
outgoing edges equals the sum of the intensities of the
incoming edges.

A simple learning graph
A learning graph for any function f : [m]4 → {0, 1} looks like
this (weights not shown):

∅

{1} {2} {3} {4}

{1, 2} {1, 3} {1, 4} {2, 3} {2, 4} {3, 4}

{1, 2, 3} {1, 2, 4} {1, 3, 4} {2, 3, 4}

{1, 2, 3, 4}

A simple learning graph

Let f be the OR function on 4 bits, and x = 0100.
The highlighted vertices contain 1-certificates for x.

∅

{1} {2} {3} {4}

{1, 2} {1, 3} {1, 4} {2, 3} {2, 4} {3, 4}

{1, 2, 3} {1, 2, 4} {1, 3, 4} {2, 3, 4}

{1, 2, 3, 4}

A simple learning graph

Let f be the OR function on 4 bits, and x = 0100.
Thus the following is a valid flow:

∅

{1} {2} {3}

{1, 2} {1, 3} {2, 3} {3, 4}

{1, 2, 3} {1, 3, 4} {2, 3, 4}

{1, 2, 3, 4}

0.4
0.1

0.5

0.1 0.3 0.1 0.2 0.2

0.1 0.3 0.1
0.1

0.4

Learning graph complexity
Define the negative and positive complexities of (G, x) as

C0(G) =
∑
e∈E

w(e), C1(G, x) =
∑
e∈E

px(e)2

we
.

Then define the complexity of G as

C(G) =
√

C0(G)max
x

{C1(G, x)}.

Theorem [Belovs 1105.4024] [Belovs and Lee 1108.3022]

If there is a learning graph for f with complexity C, there is a
quantum query algorithm using O(C) queries to compute f .

Various proofs known:
Via span programs [Belovs 1105.4024] [Reichardt 1005.1601]

Via a direct solution to the adversary bound [Belovs and Lee
1108.3022]

Via quantum walks [Belovs 1302.3143]

Learning graph complexity
Define the negative and positive complexities of (G, x) as

C0(G) =
∑
e∈E

w(e), C1(G, x) =
∑
e∈E

px(e)2

we
.

Then define the complexity of G as

C(G) =
√

C0(G)max
x

{C1(G, x)}.

Theorem [Belovs 1105.4024] [Belovs and Lee 1108.3022]

If there is a learning graph for f with complexity C, there is a
quantum query algorithm using O(C) queries to compute f .

Various proofs known:
Via span programs [Belovs 1105.4024] [Reichardt 1005.1601]

Via a direct solution to the adversary bound [Belovs and Lee
1108.3022]

Via quantum walks [Belovs 1302.3143]

Learning graph complexity
Define the negative and positive complexities of (G, x) as

C0(G) =
∑
e∈E

w(e), C1(G, x) =
∑
e∈E

px(e)2

we
.

Then define the complexity of G as

C(G) =
√

C0(G)max
x

{C1(G, x)}.

Theorem [Belovs 1105.4024] [Belovs and Lee 1108.3022]

If there is a learning graph for f with complexity C, there is a
quantum query algorithm using O(C) queries to compute f .

Various proofs known:
Via span programs [Belovs 1105.4024] [Reichardt 1005.1601]

Via a direct solution to the adversary bound [Belovs and Lee
1108.3022]

Via quantum walks [Belovs 1302.3143]

Example: rederiving Grover’s algorithm

Consider the OR function on n bits, ORn(x) = 0⇔ x = 0n. We
use the following learning graph with weight 1 on each edge
shown, and weight 0 on other edges:

∅

{1} {2} {3} . . . {n}

For any x such that ORn(x) = 1, there exists i such that xi = 1.
We use the flow

∅

{1} {2} . . . i . . . {n}

1

Then C0(G) = n, C1(G, x) = 1, so C(G) =
√

n (note 0/0 = 0!).

Example: rederiving Grover’s algorithm

Consider the OR function on n bits, ORn(x) = 0⇔ x = 0n. We
use the following learning graph with weight 1 on each edge
shown, and weight 0 on other edges:

∅

{1} {2} {3} . . . {n}

For any x such that ORn(x) = 1, there exists i such that xi = 1.
We use the flow

∅

{1} {2} . . . i . . . {n}

1

Then C0(G) = n, C1(G, x) = 1, so C(G) =
√

n (note 0/0 = 0!).

Example: rederiving Grover’s algorithm

Consider the OR function on n bits, ORn(x) = 0⇔ x = 0n. We
use the following learning graph with weight 1 on each edge
shown, and weight 0 on other edges:

∅

{1} {2} {3} . . . {n}

For any x such that ORn(x) = 1, there exists i such that xi = 1.
We use the flow

∅

{1} {2} . . . i . . . {n}

1

Then C0(G) = n, C1(G, x) = 1, so C(G) =
√

n (note 0/0 = 0!).

Example 2: element distinctness again

It will be helpful to generalise learning graphs by
allowing transitions between sets which differ in size by
more than 1.

For an edge S→ S ∪ T, define the length `(e) = |T\S|.

Generalise the weighted negative and positive
complexities of (G, x) to

C0(G) =
∑
e∈E

`(e)w(e), C1(G, x) =
∑
e∈E

`(e)px(e)2

we
.

The equivalent claims about quantum query complexity
still hold.

Example 2: element distinctness again

Problem
Given x ∈ [m]n, do there exist i 6= j such that xi = xj?

We will use the following learning graph, parametrised by an
integer r:

For all S ⊆ [n] such that |S| = r, there is an edge ∅ → S
with weight w1;

For all S ⊆ [n] such that |S| = r, and all i /∈ S, there is an
edge S→ S ∪ {i} with weight w2;
For all S ⊆ [n] such that |S| = r + 1, and all j /∈ S, there is
an edge S→ S ∪ {j} with weight w3.
All other edges have weight 0.

Example 2: element distinctness again

Problem
Given x ∈ [m]n, do there exist i 6= j such that xi = xj?

We will use the following learning graph, parametrised by an
integer r:

For all S ⊆ [n] such that |S| = r, there is an edge ∅ → S
with weight w1;
For all S ⊆ [n] such that |S| = r, and all i /∈ S, there is an
edge S→ S ∪ {i} with weight w2;

For all S ⊆ [n] such that |S| = r + 1, and all j /∈ S, there is
an edge S→ S ∪ {j} with weight w3.
All other edges have weight 0.

Example 2: element distinctness again

Problem
Given x ∈ [m]n, do there exist i 6= j such that xi = xj?

We will use the following learning graph, parametrised by an
integer r:

For all S ⊆ [n] such that |S| = r, there is an edge ∅ → S
with weight w1;
For all S ⊆ [n] such that |S| = r, and all i /∈ S, there is an
edge S→ S ∪ {i} with weight w2;
For all S ⊆ [n] such that |S| = r + 1, and all j /∈ S, there is
an edge S→ S ∪ {j} with weight w3.

All other edges have weight 0.

Example 2: element distinctness again

Problem
Given x ∈ [m]n, do there exist i 6= j such that xi = xj?

We will use the following learning graph, parametrised by an
integer r:

For all S ⊆ [n] such that |S| = r, there is an edge ∅ → S
with weight w1;
For all S ⊆ [n] such that |S| = r, and all i /∈ S, there is an
edge S→ S ∪ {i} with weight w2;
For all S ⊆ [n] such that |S| = r + 1, and all j /∈ S, there is
an edge S→ S ∪ {j} with weight w3.
All other edges have weight 0.

Example 2: element distinctness again

For example, take n = 5, r = 2:

∅

{1, 2} {1, 3} {1, 4} {1, 5} {2, 3} {2, 4} {2, 5} {3, 4} {3, 5} {4, 5}

{1, 2, 3} {1, 2, 4} {1, 2, 5} {1, 3, 4} {1, 3, 5} {1, 4, 5} {2, 3, 4} {2, 3, 5} {2, 4, 5} {3, 4, 5}

{1, 2, 3, 4} {1, 2, 3, 5} {1, 2, 4, 5} {1, 3, 4, 5} {2, 3, 4, 5}

Example 2: element distinctness again
For x such that xi 6= xj:

In the first step, put uniform intensity on the edges
corresponding to sets S such that i, j /∈ S.
In the second step, put all intensity on edges S→ S ∪ {i}.
In the third step, put all intensity on edges T → T ∪ {j}.

For example, consider i = 2, j = 4:

∅

{1, 3} {1, 5} {3, 5}

{1, 2, 3} {1, 2, 5} {2, 3, 5}

{1, 2, 3, 4} {1, 2, 4, 5} {2, 3, 4, 5}

1/3 1/3 1/3

1/3 1/3 1/3

1/3 1/3 1/3

Example 2: element distinctness again
For x such that xi 6= xj:

In the first step, put uniform intensity on the edges
corresponding to sets S such that i, j /∈ S.
In the second step, put all intensity on edges S→ S ∪ {i}.
In the third step, put all intensity on edges T → T ∪ {j}.

For example, consider i = 2, j = 4:

∅

{1, 3} {1, 5} {3, 5}

{1, 2, 3} {1, 2, 5} {2, 3, 5}

{1, 2, 3, 4} {1, 2, 4, 5} {2, 3, 4, 5}

1/3 1/3 1/3

1/3 1/3 1/3

1/3 1/3 1/3

Example 2: element distinctness again

With this scheme, it turns out that

C0(G) = w1r
(

n
r

)
+ w2(n − r)

(
n
r

)
+ w3(n − r − 1)

(
n

r + 1

)
and

C1(G, x) =
r

w1
(n−2

r

) + 1
w2
(n−2

r

) + 1
w3
(n−2

r

) .

Choosing w1, w2, w3 such that each term in the first sum is
equal to 1, we get

C(G) = O
(
r +
√

n + n/
√

r
)

and taking r = n2/3 gives C(G) = O(n2/3).

Example 2: element distinctness again

With this scheme, it turns out that

C0(G) = w1r
(

n
r

)
+ w2(n − r)

(
n
r

)
+ w3(n − r − 1)

(
n

r + 1

)
and

C1(G, x) =
r

w1
(n−2

r

) + 1
w2
(n−2

r

) + 1
w3
(n−2

r

) .
Choosing w1, w2, w3 such that each term in the first sum is
equal to 1, we get

C(G) = O
(
r +
√

n + n/
√

r
)

and taking r = n2/3 gives C(G) = O(n2/3).

Some other learning graph algorithms

A number of other query algorithms have been discovered in
the learning graph model:

Triangle finding: O(n1.296...) [Belovs 1105.4024],
O(n1.286...) [Lee et al 1210.1014].

Associativity testing: O(n1.423...) [Lee et al 1210.1014]

Arbitrary subgraphs H, H = k: O(n2−2/k−g(H)) [Zhu
1109.4165], [Lee et al 1109.5135]

k-distinctness: o(n3/4) [Belovs and Lee 1108.3022], [Belovs
1205.1534].

All of these beat previously known algorithms based on
amplitude amplification and quantum walk.

Summary and open problems

There are many quantum algorithms, solving many
different problems, using many different techniques.

The line between techniques and applications is blurry!

Efficient Hamiltonian simulation⇒ implementation of
quantum walks
Implementation of quantum walks⇒ efficient
Hamiltonian simulation

Some specific open problems which seem interesting:

Find an optimal method for Hamiltonian simulation.
Understand efficiency in the learning graph model
(significant recent progress by [Belovs 1302.3143] [Jeffery et al
1210.1199]).
Find more algorithmic applications of exponentially faster
hitting of quantum walks.

Summary and open problems

There are many quantum algorithms, solving many
different problems, using many different techniques.
The line between techniques and applications is blurry!

Efficient Hamiltonian simulation⇒ implementation of
quantum walks
Implementation of quantum walks⇒ efficient
Hamiltonian simulation

Some specific open problems which seem interesting:

Find an optimal method for Hamiltonian simulation.
Understand efficiency in the learning graph model
(significant recent progress by [Belovs 1302.3143] [Jeffery et al
1210.1199]).
Find more algorithmic applications of exponentially faster
hitting of quantum walks.

Summary and open problems

There are many quantum algorithms, solving many
different problems, using many different techniques.
The line between techniques and applications is blurry!

Efficient Hamiltonian simulation⇒ implementation of
quantum walks
Implementation of quantum walks⇒ efficient
Hamiltonian simulation

Some specific open problems which seem interesting:

Find an optimal method for Hamiltonian simulation.

Understand efficiency in the learning graph model
(significant recent progress by [Belovs 1302.3143] [Jeffery et al
1210.1199]).
Find more algorithmic applications of exponentially faster
hitting of quantum walks.

Summary and open problems

There are many quantum algorithms, solving many
different problems, using many different techniques.
The line between techniques and applications is blurry!

Efficient Hamiltonian simulation⇒ implementation of
quantum walks
Implementation of quantum walks⇒ efficient
Hamiltonian simulation

Some specific open problems which seem interesting:

Find an optimal method for Hamiltonian simulation.
Understand efficiency in the learning graph model
(significant recent progress by [Belovs 1302.3143] [Jeffery et al
1210.1199]).

Find more algorithmic applications of exponentially faster
hitting of quantum walks.

Summary and open problems

There are many quantum algorithms, solving many
different problems, using many different techniques.
The line between techniques and applications is blurry!

Efficient Hamiltonian simulation⇒ implementation of
quantum walks
Implementation of quantum walks⇒ efficient
Hamiltonian simulation

Some specific open problems which seem interesting:

Find an optimal method for Hamiltonian simulation.
Understand efficiency in the learning graph model
(significant recent progress by [Belovs 1302.3143] [Jeffery et al
1210.1199]).
Find more algorithmic applications of exponentially faster
hitting of quantum walks.

Thanks!

Some further reading:

“Quantum algorithms for algebraic problems” [Childs and
van Dam 0812.0380]

“Quantum walk based search algorithms” [Santha 0808.0059]

“Quantum algorithms” [Mosca 0808.0369]

“New developments in quantum algorithms” [Ambainis
1006.4014]

“Quantum algorithms for formula evaluation” [Ambainis
1006.3651]

“Efficient simulation of Hamiltonians” [Kothari (master’s
thesis, Waterloo)]

k-local Hamiltonian simulation (proof sketch)

Using the Lie-Trotter product formula

e−iAe−iB = e−i(A+B) + O(max{‖A‖, ‖B‖}2),

we get that for n = Ω(m3(Lt)2/ε)∥∥∥(e−iH1t/ne−iH2t/n . . . e−iHmt/n
)n

− e−i(H1+···+Hm)t
∥∥∥ 6 ε.

As each Hamiltonian Hj is O(1)-local, e−iHjt/n can be
approximated efficiently by the Solovay-Kitaev theorem.

This algorithm can be improved using higher-order product
formulae.

In particular [Berry et al 0508139], we can simulate H for time
t with a circuit which runs in time

m2‖H‖teO(
√

log m‖H‖t/ε).

k-local Hamiltonian simulation (proof sketch)

Using the Lie-Trotter product formula

e−iAe−iB = e−i(A+B) + O(max{‖A‖, ‖B‖}2),

we get that for n = Ω(m3(Lt)2/ε)∥∥∥(e−iH1t/ne−iH2t/n . . . e−iHmt/n
)n

− e−i(H1+···+Hm)t
∥∥∥ 6 ε.

As each Hamiltonian Hj is O(1)-local, e−iHjt/n can be
approximated efficiently by the Solovay-Kitaev theorem.

This algorithm can be improved using higher-order product
formulae.

In particular [Berry et al 0508139], we can simulate H for time
t with a circuit which runs in time

m2‖H‖teO(
√

log m‖H‖t/ε).

k-local Hamiltonian simulation (proof sketch)

Using the Lie-Trotter product formula

e−iAe−iB = e−i(A+B) + O(max{‖A‖, ‖B‖}2),

we get that for n = Ω(m3(Lt)2/ε)∥∥∥(e−iH1t/ne−iH2t/n . . . e−iHmt/n
)n

− e−i(H1+···+Hm)t
∥∥∥ 6 ε.

As each Hamiltonian Hj is O(1)-local, e−iHjt/n can be
approximated efficiently by the Solovay-Kitaev theorem.

This algorithm can be improved using higher-order product
formulae.

In particular [Berry et al 0508139], we can simulate H for time
t with a circuit which runs in time

m2‖H‖teO(
√

log m‖H‖t/ε).

