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Introduction

In this talk, I will discuss three connections between
combinatorics and quantum computation:

1 A quantum algorithm for pattern matching in strings
which achieves a super-polynomial speedup over any
possible classical algorithm, for most strings;

2 A quantum algorithm for a “search with wildcards”
problem which achieves a square-root speedup in the
worst case (with a cameo appearance from group testing);

3 A conjectured quantum generalisation of the
Kahn-Kalai-Linial (KKL) theorem that every boolean
function has an influential variable.
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The quantum query model in a nutshell

Imagine we have access to some function f : X→ Y as an
oracle or black box:

x 7→ f (x)

We want to determine some property of f (with success
probability, say, 2/3).

To do this, we can query f on inputs x ∈ X to get outputs
y ∈ Y. In fact, we assume we have access to a map

(x, y) 7→ (x, y + f (x)).

On a quantum computer, we can query f in superposition:

∑
x∈X,y∈Y

αxy|x〉|y〉 7→
∑

x∈X,y∈Y

αxy|x〉|y + f (x)〉.
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Example: unstructured and structured search

Problem: unstructured search
We are given access to f : [n]→ {0, 1}. Our task is to output
some x such that f (x) = 1, if such an x exists.

Grover’s algorithm [Grover ’97] solves this task using O(
√

n)
quantum queries. Classically, Θ(n) queries are required.

Problem: search of a sorted list
We are given access to f : [n]→ {0, 1} such that
x 6 y⇒ f (x) 6 f (y). Our task is to find the minimal x such
that f (x) = 1, if such an x exists.

On a classical computer, binary search solves this problem
using blog2 n + 1c queries.
The quantum query complexity is known to be
Ω(log n). . . but the precise constant factor is unknown!
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Pattern matching

In the traditional pattern matching problem, we seek to find a
pattern P : [m]→ Σ within a text T : [n]→ Σ.

T = Q U A N T U M P = A N T

We can generalise this to higher dimensions d, where
P : [m]d → Σ and T : [n]d → Σ:

T = P =
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Pattern matching

Focusing on the 1-dimensional problem for now:

Classically, it is known that this problem can be solved in
worst-case time O(n + m) [Knuth, Morris and Pratt ’77].

There is a quantum algorithm which solves this problem
(with bounded failure probability) in time
Õ(
√

n +
√

m) [Ramesh and Vinay ’03].

Both these bounds are optimal in the worst case. But. . . what
about the average case?

Here we consider a simple model where each character of T is
picked uniformly at random from Σ, and either:

P is chosen to be an arbitrary substring of T; or
P is uniformly random.

Could this be easier?



Pattern matching

Focusing on the 1-dimensional problem for now:

Classically, it is known that this problem can be solved in
worst-case time O(n + m) [Knuth, Morris and Pratt ’77].
There is a quantum algorithm which solves this problem
(with bounded failure probability) in time
Õ(
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Pattern matching

Classically, one can solve the average-case problem using
Õ(n/m +

√
n) queries, and this is optimal.

But quantumly, we have the following result:

Theorem (modulo minor technicalities)
Let T : [n]→ Σ, P : [m]→ Σ be picked as on the previous slide.
Then there is a quantum algorithm which makes

Õ(
√

n/m 2O(
√

log m))

queries and determines whether P matches T. If P does match
T, the algorithm also outputs the position at which the match
occurs. The algorithm fails with probability O(1/n), taken over
both the choice of T and P, and its internal randomness.

This is a super-polynomial speedup for large m.
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Õ(
√

n/m 2O(
√

log m))

queries and determines whether P matches T. If P does match
T, the algorithm also outputs the position at which the match
occurs. The algorithm fails with probability O(1/n), taken over
both the choice of T and P, and its internal randomness.

This is a super-polynomial speedup for large m.



The dihedral hidden subgroup problem

The main quantum ingredient in the algorithm is an algorithm
for the dihedral hidden subgroup problem:

Given two injective functions f , g : ZN → X such that
g(x) = f (x + s) for some s ∈ ZN, determine s.

The best known quantum algorithm for the dihedral HSP
uses 2O(

√
log N) = o(Nε) queries [Kuperberg ’05].

Classically, there is a lower bound of Ω(
√

N) queries.
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From the dihedral HSP to pattern matching
First, we make the pattern and text injective by concatenating
characters (an idea used previously in some different contexts
[Knuth ’77, Gharibi ’13]):

Q U A N T U M QU UA AN NT TU UM

A N T AN NT

Concatenation preserves the property of the pattern
matching the text.
If we produce a new alphabet whose symbols are strings
of length k, a query to the new string can be simulated by
k queries to the original string.
For random strings, it suffices to take k = O(log n).



From the dihedral HSP to pattern matching
First, we make the pattern and text injective by concatenating
characters (an idea used previously in some different contexts
[Knuth ’77, Gharibi ’13]):

Q U A N T U M QU UA AN NT TU UM

A N T AN NT

Concatenation preserves the property of the pattern
matching the text.

If we produce a new alphabet whose symbols are strings
of length k, a query to the new string can be simulated by
k queries to the original string.
For random strings, it suffices to take k = O(log n).



From the dihedral HSP to pattern matching
First, we make the pattern and text injective by concatenating
characters (an idea used previously in some different contexts
[Knuth ’77, Gharibi ’13]):

Q U A N T U M QU UA AN NT TU UM

A N T AN NT

Concatenation preserves the property of the pattern
matching the text.
If we produce a new alphabet whose symbols are strings
of length k, a query to the new string can be simulated by
k queries to the original string.

For random strings, it suffices to take k = O(log n).



From the dihedral HSP to pattern matching
First, we make the pattern and text injective by concatenating
characters (an idea used previously in some different contexts
[Knuth ’77, Gharibi ’13]):

Q U A N T U M QU UA AN NT TU UM

A N T AN NT

Concatenation preserves the property of the pattern
matching the text.
If we produce a new alphabet whose symbols are strings
of length k, a query to the new string can be simulated by
k queries to the original string.
For random strings, it suffices to take k = O(log n).



From the dihedral HSP to pattern matching

Second, we apply the dihedral HSP algorithm to the pattern
and the text, at a randomly chosen offset.

Claim
If our guess for the start of the pattern is correct to within
distance m 2−O(

√
log m), the dihedral HSP algorithm outputs

the correct position for the start of the pattern.
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Completing the argument

The probability of our guess being in this “good” range is
p = Ω(m 2−O(

√
log m)/n).

Using a variant of Grover’s algorithm which can cope
with bounded-error inputs, we can find a “good” position
of this kind using O(1/√p) = O(

√
n/m 2O(

√
log m)) queries.

For the quantum connoisseurs:

To extend this to higher dimensions d we need to
generalise Kuperberg’s dihedral HSP algorithm.

We also give a new variant of his algorithm with the equal
best known complexity and a simpler correctness proof.
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Search with wildcards

We are given oracle access to an unknown n-bit string x. Our
task is to determine x using the minimum number of queries.

The different possible queries are given by strings
s ∈ {0, 1, ∗}n. A query returns 1 if xi = si for all i such that
si 6= ∗, and returns 0 otherwise.

A generalisation of the simple model where we are
allowed to query individual bits of x.

Classically, we need n queries to determine x (each query gives
one bit of information).

Theorem
Search with wildcards can be solved with success probability
2/3 using O(

√
n) quantum queries.
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Solving search with wildcards

The algorithm for search with wildcards is based on this claim:

Measurement Lemma
Fix n > 1 and, for any 0 6 k 6 n, set

|ψk
x〉 :=

1(n
k

)1/2

∑
S⊆[n],|S|=k

|S〉|xS〉,

where |xS〉 :=
⊗

i∈S |xi〉. Then, for any k = n − O(
√

n), there is a
quantum measurement which, on input |ψk

x〉, outputs x̃ such
that the expected Hamming distance d(x, x̃) is O(1).

This is surprising because the equivalent classical
statement is not true!

The proof uses some basic Fourier analysis over Zn
2 and

combinatorics.
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Solving search with wildcards

Our algorithm for search with wildcards uses the
Measurement Lemma to repeatedly learn O(

√
n) bits of x at a

time in superposition.

Imagine we have |ψk
x〉. For k ′ > k, this can be mapped to

∑
S ′:S⊆[n],|S ′|=k ′

|S ′〉

 ∑
S:S⊆S ′,|S|=k

|S〉|xS〉

 =
∑

S:S⊆[n],|S|=k ′
|S〉|ψk

xS
〉,

so if we can map |ψk
xS
〉 7→ |xS〉, we’ve made |ψk ′

x 〉.

By the lemma, we can do this when k = k ′ − O(
√

k ′).

After each measurement, an expected O(1) bits are
incorrect.

How to fix these?
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Combinatorial group testing (CGT)

Proposed by [Dorfman ’43] as a means of “weeding out all
syphilitic men called up for induction”.

The abstract problem is:

We have a set of n items x1, . . . , xn ∈ {0, 1}.

At most k� n items xi are special and have xi = 1.

We are allowed to query any subset S ⊆ [n] := {1, . . . ,n}. A
query returns 1 if any items in S are special.

We want to output the identities of all of the special items
using the minimal number of queries.

In particular, we would like to minimise the dependence on n.
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Combinatorial group testing

The number of classical queries required to solve CGT is

Θ

(
log
(

n
k

))
= Θ(k log(n/k)).

Many applications known: molecular biology, data
streaming algorithms, compressed sensing, pattern
matching in strings, . . .

Theorem
CGT can be solved using O(k) quantum queries.

This has subsequently been improved to O(
√

k) queries [Belovs
’13], which is optimal.
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Back to search with wildcards

When we measure |ψk
x〉, we get an outcome x̃ such that

d(x̃, x) = O(1).

We want to determine x, which is equivalent to
determining x̃⊕ x, a string of Hamming weight O(1).

A wildcard query corresponding to S ⊆ [n] and x̃S ⊕ y,
y ∈ {0, 1}|S|, returns 1 iff all bits of x̃S are correct.

So we can use the algorithm for CGT to find, and correct,
all incorrect bits using O(1) queries.



Boolean functions and influential variables

For the purposes of the rest of this talk, a boolean function
is a function of the form

f : {0, 1}n → {±1}.

Define the influence of the j’th variable as

Ij(f ) = Pr
x
[f (x) 6= f (xj)],

where xj is the bit-string formed by starting with x and
flipping the j’th bit.

For example, if f : {0, 1}2 → {±1} is defined by f (x) = x1,

I1(f ) = 1, I2(f ) = 0.



Boolean functions and influential variables

The Kahn-Kalai-Linial (KKL) theorem states that every
(balanced) boolean function has an influential variable:

Theorem [Kahn, Kalai and Linial ’88]

Let f : {0, 1}n → {±1} satisfy E[f ] = 0. Then there exists j such
that

Ij(f ) = Ω((log n)/n).

Corollary
In any balanced voting scheme on n parties, there is a coalition
of O(n/ log n) voters who control the outcome of the election
with probability 99%.

We would like to generalise this to the quantum setting. . .
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Quantum boolean functions

A natural quantum (aka noncommutative) generalisation of
the concept of a boolean function:

A square 2n-dimensional matrix F (i.e. a matrix acting on
n qubits) whose eigenvalues are all ±1.
Then a classical boolean function corresponds to a
diagonal matrix.

Many of the concepts from classical analysis of boolean
functions carry across to the quantum setting.

In particular, a natural generalisation of Fourier expansion of
functions (in terms of the characters of the group Zn

2) is
expansion in terms of tensor products of the Pauli matrices

I =
(

1 0
0 1

)
, X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
.
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Influence and quantum boolean functions

Define the derivative of F in the j’th direction as

∆j(F) := F − (trj F)⊗
Ij

2
.

The second term traces out (throws away) the j’th qubit of
F and replaces it with the (normalised) identity matrix.

For example: ∆1(X ⊗ I) = X ⊗ I, ∆2(X ⊗ I) = 0.

Define the influence of the j’th qubit as

‖∆j‖2
2 :=

tr(∆2
j )

2n .

For example: I1(X ⊗ I) = 1, I2(X ⊗ I) = 0.
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Does every quantum boolean function have
an influential qubit?

Conjecture [AM and Osborne ’08]

For every quantum boolean function F on n qubits such that
tr F = 0, there is a qubit j such that Ij(F) = Ω((log n)/n).

We can easily prove a weaker lower bound of Ω(1/n).

We can also prove the conjecture in a few special cases (for
example, when F can be diagonalised by local unitaries, or
can be expressed as a sum of anticommuting terms).

The conjecture might also be true for unitary operators in
general.
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A step on the path to this conjecture?

A key ingredient in the proof of the KKL Theorem is the
hypercontractive (Bonami-Gross-Beckner) inequality for
noise applied to functions f : {0, 1}n → R.

We can prove a suitable quantum generalisation of this
result to hypercontractivity of the qubit depolarising
channel.

This has the following consequence:

A quantum generalisation of a lemma of Talagrand
Let F be a traceless Hermitian operator on n qubits. Then

‖F‖2
2 6

n∑
j=1

10‖∆j(F)‖2
2

(2/3) log(‖∆j(F)‖2/‖∆j(F)‖1) + 1
.
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A step on the path to this conjecture?

A quantum generalisation of a lemma of Talagrand
Let F be a traceless Hermitian operator on n qubits. Then

‖F‖2
2 6

n∑
j=1

10‖∆j(F)‖2
2

(2/3) log(‖∆j(F)‖2/‖∆j(F)‖1) + 1
.

Classically, the KKL Theorem follows immediately from
this lemma, using the fact that ∆j(f ) only takes values in
{0, 1,−1}, allowing us to control the denominator.

The analogue does not hold in the quantum setting!

It seems we need to find a “non-combinatorial”
argument. . .



Summary

We have seen that quantum algorithms:

. . . can provide a substantial speedup for pattern
matching problems on average-case inputs;

. . . can achieve a square-root speedup for search with
wildcards.

There are a number of results in the classical theory of boolean
functions for which it would be very nice to have quantum
analogues: one particularly annoying example is the KKL
Theorem.

Another open problem: what is the quantum query
complexity of the dihedral hidden subgroup problem?
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Thanks!

Some further reading:

Quantum pattern matching fast on average
arXiv:1408.1816

Quantum algorithms for search with wildcards and
combinatorial group testing (with Andris Ambainis)
Quantum Information & Computation, vol. 14 no. 5&6,
pp. 439–453, 2014; arXiv:1210.1148

Quantum boolean functions (with Tobias Osborne)
Chicago Journal of Theoretical Computer Science 2010;
arXiv:0810.2435



Proving the measurement lemma

We need to prove we can distinguish the |ψk
x〉 states. We use

the pretty good measurement (PGM).

Lemma
The probability that the PGM outputs y on input |ψk

x〉 is
precisely (

√
G)2

xy, where

Gxy = 〈ψk
x|ψ

k
y〉 =

1(n
k

) ∑
S⊆[n],|S|=k

[xS = yS] =

(n−d(x,y)
k

)(n
k

) .

We want to bound Dk :=
∑

y∈{0,1}n d(x, y)(
√

Gxy)
2.

Gxy depends only on x⊕ y, so G is diagonalised by the
Fourier transform over Zn

2 and Dk does not depend on x.

Dk can be upper bounded using Fourier duality and some
combinatorics.
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Combinatorial group testing

The k = 1 case
If k = 1, CGT can be solved exactly using one quantum query.

1 Create the state 1√
2n+1

∑
s∈{0,1}n |s〉(|0〉− |1〉).

2 Apply the oracle to create the state

1√
2n+1

∑
s∈{0,1}n

(−1)
∨

i sixi |s〉(|0〉− |1〉)

=
1√

2n+1

∑
s∈{0,1}n

(−1)s·x|s〉(|0〉− |1〉).

3 Apply Hadamard gates to each qubit of the first register
and measure to obtain x.
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Generalising this idea to arbitrary k

Claim
CGT can be solved using O(k) quantum queries on average.

Construct S ⊆ [n] by including each i ∈ [n] with prob. 1/k.

Run the k = 1 algorithm on the subset of bits in S.

If S contains exactly one 1 bit at position i, which will
occur with probability at least (1 − 1/k)k−1 > 1/e, we are
guaranteed to learn i.

We can check whether the index ĩ we received really is a 1
by making one more query to index ĩ.

Following each successful query, we reduce k by 1 and
exclude the bit that we just learned from future queries.

In order to learn x completely, the expected overall
number of queries used is O(k).
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Following each successful query, we reduce k by 1 and
exclude the bit that we just learned from future queries.

In order to learn x completely, the expected overall
number of queries used is O(k).



A quantum hypercontractive inequality
Let Dε be the qubit depolarising channel with noise rate ε, i.e.

Dε(ρ) =
(1 − ε)

2
tr(ρ)I + ερ.

Theorem [AM and Osborne ’08, King ’12]

Let M be a Hermitian operator on n qubits and fix q > p > 1.
Then, provided that

ε 6

√
p − 1
q − 1

,

we have
‖D⊗n
ε (M)‖q 6 ‖f‖p.

Here ‖ · ‖p is the normalised Schatten p-norm:

‖M‖p =

(
tr |M|p

2n

)1/p

.




