
Exact quantum query complexity

Ashley Montanaro, Richard Jozsa and Graeme Mitchison

Centre for Quantum Information and Foundations,
Department of Applied Mathematics and Theoretical Physics,

University of Cambridge

arXiv:1111.0475

arXiv:1111.0475

Query complexity

Many important quantum algorithms operate in the query
complexity model.

In this model, we are given access to a hidden bit-string
x ∈ {0, 1}n via a black box which returns xi when i is
passed in.

To implement this on a quantum computer, we imagine
we have access to a unitary oracle which maps
|i〉|y〉 7→ |i〉|y⊕ xi〉.

We want to compute some (known) function f (x) using
the minimum worst-case number of queries.

Query complexity

Define D(f) (QE(f)) as the minimum number of classical
(quantum) queries required to compute f with certainty.

Similarly, R2(f) (Q2(f)) is the minimum number of
classical (quantum) queries required to compute f with
worst-case success probability 2/3.

Of course, Q2(f) 6 QE(f) 6 D(f) and Q2(f) 6 R2(f) 6 D(f).

Query complexity separations

Many separations are known between quantum and classical
query complexity.

The Deutsch-Jozsa algorithm shows the existence of a
partial function f (i.e. with a promise on the input) such
that QE(f) = O(1), but D(f) = Ω(n).

In fact, it is known that if f is a partial function we can
have QE(f) exponentially smaller than even R2(f) [Brassard
and Høyer ’97].

If f is a total function (i.e. no promise on the input), we
can have Q2(f) = O(

√
R2(f)) by Grover’s algorithm.

On the other hand, for all total functions f ,
R2(f) = O(Q2(f)6) [Beals et al ’97].

So bounded-error quantum query complexity of total
functions is fairly well understood.

Query complexity separations

Many separations are known between quantum and classical
query complexity.

The Deutsch-Jozsa algorithm shows the existence of a
partial function f (i.e. with a promise on the input) such
that QE(f) = O(1), but D(f) = Ω(n).

In fact, it is known that if f is a partial function we can
have QE(f) exponentially smaller than even R2(f) [Brassard
and Høyer ’97].

If f is a total function (i.e. no promise on the input), we
can have Q2(f) = O(

√
R2(f)) by Grover’s algorithm.

On the other hand, for all total functions f ,
R2(f) = O(Q2(f)6) [Beals et al ’97].

So bounded-error quantum query complexity of total
functions is fairly well understood.

Query complexity separations

Many separations are known between quantum and classical
query complexity.

The Deutsch-Jozsa algorithm shows the existence of a
partial function f (i.e. with a promise on the input) such
that QE(f) = O(1), but D(f) = Ω(n).

In fact, it is known that if f is a partial function we can
have QE(f) exponentially smaller than even R2(f) [Brassard
and Høyer ’97].

If f is a total function (i.e. no promise on the input), we
can have Q2(f) = O(

√
R2(f)) by Grover’s algorithm.

On the other hand, for all total functions f ,
R2(f) = O(Q2(f)6) [Beals et al ’97].

So bounded-error quantum query complexity of total
functions is fairly well understood.

Query complexity separations

Many separations are known between quantum and classical
query complexity.

The Deutsch-Jozsa algorithm shows the existence of a
partial function f (i.e. with a promise on the input) such
that QE(f) = O(1), but D(f) = Ω(n).

In fact, it is known that if f is a partial function we can
have QE(f) exponentially smaller than even R2(f) [Brassard
and Høyer ’97].

If f is a total function (i.e. no promise on the input), we
can have Q2(f) = O(

√
R2(f)) by Grover’s algorithm.

On the other hand, for all total functions f ,
R2(f) = O(Q2(f)6) [Beals et al ’97].

So bounded-error quantum query complexity of total
functions is fairly well understood.

What about exact quantum query complexity?

It was shown by [Midrijanis ’04] that for total functions f ,
D(f) = O(QE(f)3).

On the other hand, exact quantum algorithms can indeed
be better than classical algorithms: [Cleve et al ’98] showed
that the parity of n bits,

f (x) = x1 ⊕ x2 ⊕ · · · ⊕ xn

can be computed exactly using only dn/2e quantum
queries.

The algorithm is based on simply computing the parity of
2 bits using 1 quantum query.

What about exact quantum query complexity?

It was shown by [Midrijanis ’04] that for total functions f ,
D(f) = O(QE(f)3).

On the other hand, exact quantum algorithms can indeed
be better than classical algorithms: [Cleve et al ’98] showed
that the parity of n bits,

f (x) = x1 ⊕ x2 ⊕ · · · ⊕ xn

can be computed exactly using only dn/2e quantum
queries.

The algorithm is based on simply computing the parity of
2 bits using 1 quantum query.

What about exact quantum query complexity?

It was shown by [Midrijanis ’04] that for total functions f ,
D(f) = O(QE(f)3).

On the other hand, exact quantum algorithms can indeed
be better than classical algorithms: [Cleve et al ’98] showed
that the parity of n bits,

f (x) = x1 ⊕ x2 ⊕ · · · ⊕ xn

can be computed exactly using only dn/2e quantum
queries.

The algorithm is based on simply computing the parity of
2 bits using 1 quantum query.

Computing the parity of 2 bits in 1 query

1 Create the state 1
2 (|1〉+ |2〉) (|0〉− |1〉).

2 Query the oracle to produce

1
2
((−1)x1 |1〉+ (−1)x2 |2〉) (|0〉− |1〉) .

3 Perform a Hadamard on the first qubit to produce the
state

1
2
(((−1)x1 + (−1)x2)|1〉+ ((−1)x1 − (−1)x2)|2〉) .

4 Measure the first qubit and output 0 if the outcome was 1,
and 1 if the outcome was 2.

Observe that this algorithm is nonadaptive.

Computing the parity of 2 bits in 1 query

1 Create the state 1
2 (|1〉+ |2〉) (|0〉− |1〉).

2 Query the oracle to produce

1
2
((−1)x1 |1〉+ (−1)x2 |2〉) (|0〉− |1〉) .

3 Perform a Hadamard on the first qubit to produce the
state

1
2
(((−1)x1 + (−1)x2)|1〉+ ((−1)x1 − (−1)x2)|2〉) .

4 Measure the first qubit and output 0 if the outcome was 1,
and 1 if the outcome was 2.

Observe that this algorithm is nonadaptive.

Computing the parity of 2 bits in 1 query

1 Create the state 1
2 (|1〉+ |2〉) (|0〉− |1〉).

2 Query the oracle to produce

1
2
((−1)x1 |1〉+ (−1)x2 |2〉) (|0〉− |1〉) .

3 Perform a Hadamard on the first qubit to produce the
state

1
2
(((−1)x1 + (−1)x2)|1〉+ ((−1)x1 − (−1)x2)|2〉) .

4 Measure the first qubit and output 0 if the outcome was 1,
and 1 if the outcome was 2.

Observe that this algorithm is nonadaptive.

Computing the parity of 2 bits in 1 query

1 Create the state 1
2 (|1〉+ |2〉) (|0〉− |1〉).

2 Query the oracle to produce

1
2
((−1)x1 |1〉+ (−1)x2 |2〉) (|0〉− |1〉) .

3 Perform a Hadamard on the first qubit to produce the
state

1
2
(((−1)x1 + (−1)x2)|1〉+ ((−1)x1 − (−1)x2)|2〉) .

4 Measure the first qubit and output 0 if the outcome was 1,
and 1 if the outcome was 2.

Observe that this algorithm is nonadaptive.

Other exact quantum query algorithms for
total functions

Er...

In fact, to my knowledge there are no other (non-trivial)
exact quantum query algorithms for total functions
known!

However, some authors have used the algorithm for parity
as a subroutine, e.g. [Hayes et al ’02] use it to compute the
majority function using n − O(log n) queries.

But it has been open for 14+ years whether there exists a
total function f such that QE(f) < D(f)/2.

Could computing parities be all that exact quantum query
algorithms for total functions can do?

Other exact quantum query algorithms for
total functions

Er...

In fact, to my knowledge there are no other (non-trivial)
exact quantum query algorithms for total functions
known!

However, some authors have used the algorithm for parity
as a subroutine, e.g. [Hayes et al ’02] use it to compute the
majority function using n − O(log n) queries.

But it has been open for 14+ years whether there exists a
total function f such that QE(f) < D(f)/2.

Could computing parities be all that exact quantum query
algorithms for total functions can do?

Other exact quantum query algorithms for
total functions

Er...

In fact, to my knowledge there are no other (non-trivial)
exact quantum query algorithms for total functions
known!

However, some authors have used the algorithm for parity
as a subroutine, e.g. [Hayes et al ’02] use it to compute the
majority function using n − O(log n) queries.

But it has been open for 14+ years whether there exists a
total function f such that QE(f) < D(f)/2.

Could computing parities be all that exact quantum query
algorithms for total functions can do?

Other exact quantum query algorithms for
total functions

Er...

In fact, to my knowledge there are no other (non-trivial)
exact quantum query algorithms for total functions
known!

However, some authors have used the algorithm for parity
as a subroutine, e.g. [Hayes et al ’02] use it to compute the
majority function using n − O(log n) queries.

But it has been open for 14+ years whether there exists a
total function f such that QE(f) < D(f)/2.

Could computing parities be all that exact quantum query
algorithms for total functions can do?

Other exact quantum query algorithms for
total functions

Er...

In fact, to my knowledge there are no other (non-trivial)
exact quantum query algorithms for total functions
known!

However, some authors have used the algorithm for parity
as a subroutine, e.g. [Hayes et al ’02] use it to compute the
majority function using n − O(log n) queries.

But it has been open for 14+ years whether there exists a
total function f such that QE(f) < D(f)/2.

Could computing parities be all that exact quantum query
algorithms for total functions can do?

Other exact quantum query algorithms for
total functions

Er...

In fact, to my knowledge there are no other (non-trivial)
exact quantum query algorithms for total functions
known!

However, some authors have used the algorithm for parity
as a subroutine, e.g. [Hayes et al ’02] use it to compute the
majority function using n − O(log n) queries.

But it has been open for 14+ years whether there exists a
total function f such that QE(f) < D(f)/2.

Could computing parities be all that exact quantum query
algorithms for total functions can do?

Our results
We show that exact quantum query complexity is richer than
just computing parities.

We present some new examples of total boolean functions
f such that QE(f) is a constant multiple of D(f) (between
1/2 and 2/3). We show that these separations cannot be
obtained by just computing parities of pairs of bits.
These separations are based on concatenating small
separations found for functions on small numbers of bits.
For example, we have an exact quantum algorithm which
uses 2 queries to compute the EXACT2 function on 4 bits:

EXACT2(x) = 1 if |x| = 2, EXACT2(x) = 0 otherwise.

In fact, we give optimal exact quantum query algorithms
for every boolean function f : {0, 1}3 → {0, 1}.
We characterise the model of nonadaptive quantum query
complexity in terms of a coding-theoretic quantity.

Our results
We show that exact quantum query complexity is richer than
just computing parities.

We present some new examples of total boolean functions
f such that QE(f) is a constant multiple of D(f) (between
1/2 and 2/3). We show that these separations cannot be
obtained by just computing parities of pairs of bits.

These separations are based on concatenating small
separations found for functions on small numbers of bits.
For example, we have an exact quantum algorithm which
uses 2 queries to compute the EXACT2 function on 4 bits:

EXACT2(x) = 1 if |x| = 2, EXACT2(x) = 0 otherwise.

In fact, we give optimal exact quantum query algorithms
for every boolean function f : {0, 1}3 → {0, 1}.
We characterise the model of nonadaptive quantum query
complexity in terms of a coding-theoretic quantity.

Our results
We show that exact quantum query complexity is richer than
just computing parities.

We present some new examples of total boolean functions
f such that QE(f) is a constant multiple of D(f) (between
1/2 and 2/3). We show that these separations cannot be
obtained by just computing parities of pairs of bits.
These separations are based on concatenating small
separations found for functions on small numbers of bits.

For example, we have an exact quantum algorithm which
uses 2 queries to compute the EXACT2 function on 4 bits:

EXACT2(x) = 1 if |x| = 2, EXACT2(x) = 0 otherwise.

In fact, we give optimal exact quantum query algorithms
for every boolean function f : {0, 1}3 → {0, 1}.
We characterise the model of nonadaptive quantum query
complexity in terms of a coding-theoretic quantity.

Our results
We show that exact quantum query complexity is richer than
just computing parities.

We present some new examples of total boolean functions
f such that QE(f) is a constant multiple of D(f) (between
1/2 and 2/3). We show that these separations cannot be
obtained by just computing parities of pairs of bits.
These separations are based on concatenating small
separations found for functions on small numbers of bits.
For example, we have an exact quantum algorithm which
uses 2 queries to compute the EXACT2 function on 4 bits:

EXACT2(x) = 1 if |x| = 2, EXACT2(x) = 0 otherwise.

In fact, we give optimal exact quantum query algorithms
for every boolean function f : {0, 1}3 → {0, 1}.
We characterise the model of nonadaptive quantum query
complexity in terms of a coding-theoretic quantity.

Our results
We show that exact quantum query complexity is richer than
just computing parities.

We present some new examples of total boolean functions
f such that QE(f) is a constant multiple of D(f) (between
1/2 and 2/3). We show that these separations cannot be
obtained by just computing parities of pairs of bits.
These separations are based on concatenating small
separations found for functions on small numbers of bits.
For example, we have an exact quantum algorithm which
uses 2 queries to compute the EXACT2 function on 4 bits:

EXACT2(x) = 1 if |x| = 2, EXACT2(x) = 0 otherwise.

In fact, we give optimal exact quantum query algorithms
for every boolean function f : {0, 1}3 → {0, 1}.

We characterise the model of nonadaptive quantum query
complexity in terms of a coding-theoretic quantity.

Our results
We show that exact quantum query complexity is richer than
just computing parities.

We present some new examples of total boolean functions
f such that QE(f) is a constant multiple of D(f) (between
1/2 and 2/3). We show that these separations cannot be
obtained by just computing parities of pairs of bits.
These separations are based on concatenating small
separations found for functions on small numbers of bits.
For example, we have an exact quantum algorithm which
uses 2 queries to compute the EXACT2 function on 4 bits:

EXACT2(x) = 1 if |x| = 2, EXACT2(x) = 0 otherwise.

In fact, we give optimal exact quantum query algorithms
for every boolean function f : {0, 1}3 → {0, 1}.
We characterise the model of nonadaptive quantum query
complexity in terms of a coding-theoretic quantity.

Numerical results

Our analytical results were inspired by numerical results
where we numerically evaluated the best possible success
probability of quantum algorithms for all boolean
functions on up to 4 bits (and all symmetric boolean
function on up to 6 bits).

This can be done using a semidefinite programming
(SDP) formulation of quantum query complexity due to
[Barnum, Saks and Szegedy ’03].

Given a solution to the SDP, one can write down a
quantum query algorithm achieving the same parameters.

If the SDP gives a result which is close to exact, one can
hope to write down an exact quantum algorithm.

Numerical results

Our analytical results were inspired by numerical results
where we numerically evaluated the best possible success
probability of quantum algorithms for all boolean
functions on up to 4 bits (and all symmetric boolean
function on up to 6 bits).

This can be done using a semidefinite programming
(SDP) formulation of quantum query complexity due to
[Barnum, Saks and Szegedy ’03].

Given a solution to the SDP, one can write down a
quantum query algorithm achieving the same parameters.

If the SDP gives a result which is close to exact, one can
hope to write down an exact quantum algorithm.

Numerical results

Our analytical results were inspired by numerical results
where we numerically evaluated the best possible success
probability of quantum algorithms for all boolean
functions on up to 4 bits (and all symmetric boolean
function on up to 6 bits).

This can be done using a semidefinite programming
(SDP) formulation of quantum query complexity due to
[Barnum, Saks and Szegedy ’03].

Given a solution to the SDP, one can write down a
quantum query algorithm achieving the same parameters.

If the SDP gives a result which is close to exact, one can
hope to write down an exact quantum algorithm.

Numerical results

Our analytical results were inspired by numerical results
where we numerically evaluated the best possible success
probability of quantum algorithms for all boolean
functions on up to 4 bits (and all symmetric boolean
function on up to 6 bits).

This can be done using a semidefinite programming
(SDP) formulation of quantum query complexity due to
[Barnum, Saks and Szegedy ’03].

Given a solution to the SDP, one can write down a
quantum query algorithm achieving the same parameters.

If the SDP gives a result which is close to exact, one can
hope to write down an exact quantum algorithm.

Quantum query complexity SDP [BSS ’03]

Given f : {0, 1}n → {0, 1} and t ∈ N, find a sequence of 2n-dim
real symmetric matrices (M(j)

i), where 0 6 i 6 n and
0 6 j 6 t − 1, and 2n-dim real symmetric matrices Γ0, Γ1, such
that

n∑
i=0

M(0)
i = E0

n∑
i=0

M(j)
i =

n∑
i=0

Ei ◦M(j−1)
i (for 1 6 j 6 t − 1)

Γ0 + Γ1 =

n∑
i=0

Ei ◦M(t−1)
i

F0 ◦ Γ0 > (1 − ε)F0, F1 ◦ Γ1 > (1 − ε)F1.

Here Ei is the matrix 〈x|Ei|y〉 = (−1)xi+yi , F0 and F1 are
diagonal 0/1 matrices where 〈x|Fz|x〉 = 1 if and only if f (x) = z,
and ◦ is the Hadamard (entrywise) product of matrices.

Quantum query complexity SDP

Theorem [Barnum, Saks and Szegedy ’03]

There is a quantum query algorithm that uses t queries to
compute a function f : {0, 1}n → {0, 1} within error ε if and only
if the above SDP is feasible.

Further, given a solution to the above SDP, one can write down
an explicit quantum algorithm achieving the same parameters.

The explicit algorithm (sketch)

Any quantum query algorithm consists of a sequence of
oracle calls interspersed with arbitrary unitary operators
(which do not depend on the input).

Divide the Hilbert space on which the quantum query
algorithm operates into two registers (input and
workspace).

Define the state of the algorithm on input x at time j (i.e.
just before the (j + 1)’st query is made) to be

|ψ
(j)
x 〉 =

n∑
i=0

|i〉|ψ(j)
x,i 〉,

where
|ψ

(j)
x,i 〉 =

√
M(j)

i |x〉.

The explicit algorithm (sketch)

Any quantum query algorithm consists of a sequence of
oracle calls interspersed with arbitrary unitary operators
(which do not depend on the input).

Divide the Hilbert space on which the quantum query
algorithm operates into two registers (input and
workspace).

Define the state of the algorithm on input x at time j (i.e.
just before the (j + 1)’st query is made) to be

|ψ
(j)
x 〉 =

n∑
i=0

|i〉|ψ(j)
x,i 〉,

where
|ψ

(j)
x,i 〉 =

√
M(j)

i |x〉.

The explicit algorithm (sketch)

Any quantum query algorithm consists of a sequence of
oracle calls interspersed with arbitrary unitary operators
(which do not depend on the input).

Divide the Hilbert space on which the quantum query
algorithm operates into two registers (input and
workspace).

Define the state of the algorithm on input x at time j (i.e.
just before the (j + 1)’st query is made) to be

|ψ
(j)
x 〉 =

n∑
i=0

|i〉|ψ(j)
x,i 〉,

where
|ψ

(j)
x,i 〉 =

√
M(j)

i |x〉.

The explicit algorithm (sketch)

Let Ox be the oracle operator Ox|i〉 = (−1)xi |i〉, and set
Ox|0〉 = |0〉.

If the M(j)
i matrices form a solution to the SDP, this

implies there exists a unitary operator Uj such that

UjOx|ψ
(j−1)
x 〉 = |ψ

(j)
x 〉. Further, Uj can be found explicitly

using the polar decomposition.

Similarly, the constraints on Γ0, Γ1 can be used to show
that there exists a Ut such that Ut|ψ

(t)
x 〉 = |γx〉 for all x,

where |γx〉 is a state which can be measured to determine
whether f (x) = 0 with success probability > 1 − ε.

Solving the BSS SDP numerically

We used the CVX package for Matlab to solve this SDP. For
example, we get the following results for all boolean functions
on 3 bits (up to isomorphism):

ID Function 1 query 2 queries
1 x1 ∧ x2 ∧ x3 0.800 0.980
6 x1 ∧ (x2 ⊕ x3) 0.667 1
7 x1 ∧ (x2 ∨ x3) 0.773 1

22 EXACT2 0.571 1
23 MAJ 0.667 1
30 x1 ⊕ (x2 ∨ x3) 0.667 1
53 SEL(x1, x2, x3) 0.854 1
67 (x1 ∧ x2)∨ (x̄1 ∧ x̄2 ∧ x3) 0.773 1
105 PARITY 0.500 1
126 NAE 0.900 1

Solving the BSS SDP numerically

We used the CVX package for Matlab to solve this SDP. For
example, we get the following results for all boolean functions
on 3 bits (up to isomorphism):

ID Function 1 query 2 queries
1 x1 ∧ x2 ∧ x3 0.800 0.980
6 x1 ∧ (x2 ⊕ x3) 0.667 1
7 x1 ∧ (x2 ∨ x3) 0.773 1

22 EXACT2 0.571 1
23 MAJ 0.667 1
30 x1 ⊕ (x2 ∨ x3) 0.667 1
53 SEL(x1, x2, x3) 0.854 1
67 (x1 ∧ x2)∨ (x̄1 ∧ x̄2 ∧ x3) 0.773 1
105 PARITY 0.500 1
126 NAE 0.900 1

Highlighted functions display a separation QE(f) < D(f).

Solving the BSS SDP numerically

We used the CVX package for Matlab to solve this SDP. For
example, we get the following results for all boolean functions
on 3 bits (up to isomorphism):

ID Function 1 query 2 queries
1 x1 ∧ x2 ∧ x3 0.800 0.980
6 x1 ∧ (x2 ⊕ x3) 0.667 1
7 x1 ∧ (x2 ∨ x3) 0.773 1

22 EXACT2 0.571 1
23 MAJ 0.667 1
30 x1 ⊕ (x2 ∨ x3) 0.667 1
53 SEL(x1, x2, x3) 0.854 1
67 (x1 ∧ x2)∨ (x̄1 ∧ x̄2 ∧ x3) 0.773 1
105 PARITY 0.500 1
126 NAE 0.900 1

Red functions: optimal q. algm is based on computing parities.

EXACT2

We now give a simple and explicit exact quantum algorithm
for the EXACT2 function on 4 bits.

Again let Ox be the oracle operator Ox|i〉 = (−1)xi |i〉, with
Ox|0〉 = |0〉.

Define a unitary matrix U by

U =
1
2

0 1 1 1 1
1 0 1 ω ω2

1 1 0 ω2 ω

1 ω ω2 0 1
1 ω2 ω 1 0

 ,

where ω = e2πi/3 is a complex cube root of 1.

EXACT2 algorithm

1 Create the state

|ψ〉 = 1
2

4∑
i=1

|i〉.

2 Apply Ox, then U, then Ox again.
3 Perform the measurement consisting of a projection onto

the state |ψ〉 and its orthogonal complement.
4 If the outcome is |ψ〉, output 1, and otherwise 0.

Theorem
The above algorithm uses 2 queries and computes the EXACT2
function on 4 bits with certainty.

The idea behind this algorithm can be extended to give an
algorithm which distinguishes between |x| = n/2 and
|x| ∈ {0, 1, n − 1, n}, for all even n, using 2 queries.

EXACT2 algorithm

1 Create the state

|ψ〉 = 1
2

4∑
i=1

|i〉.

2 Apply Ox, then U, then Ox again.

3 Perform the measurement consisting of a projection onto
the state |ψ〉 and its orthogonal complement.

4 If the outcome is |ψ〉, output 1, and otherwise 0.

Theorem
The above algorithm uses 2 queries and computes the EXACT2
function on 4 bits with certainty.

The idea behind this algorithm can be extended to give an
algorithm which distinguishes between |x| = n/2 and
|x| ∈ {0, 1, n − 1, n}, for all even n, using 2 queries.

EXACT2 algorithm

1 Create the state

|ψ〉 = 1
2

4∑
i=1

|i〉.

2 Apply Ox, then U, then Ox again.
3 Perform the measurement consisting of a projection onto

the state |ψ〉 and its orthogonal complement.

4 If the outcome is |ψ〉, output 1, and otherwise 0.

Theorem
The above algorithm uses 2 queries and computes the EXACT2
function on 4 bits with certainty.

The idea behind this algorithm can be extended to give an
algorithm which distinguishes between |x| = n/2 and
|x| ∈ {0, 1, n − 1, n}, for all even n, using 2 queries.

EXACT2 algorithm

1 Create the state

|ψ〉 = 1
2

4∑
i=1

|i〉.

2 Apply Ox, then U, then Ox again.
3 Perform the measurement consisting of a projection onto

the state |ψ〉 and its orthogonal complement.
4 If the outcome is |ψ〉, output 1, and otherwise 0.

Theorem
The above algorithm uses 2 queries and computes the EXACT2
function on 4 bits with certainty.

The idea behind this algorithm can be extended to give an
algorithm which distinguishes between |x| = n/2 and
|x| ∈ {0, 1, n − 1, n}, for all even n, using 2 queries.

EXACT2 algorithm

1 Create the state

|ψ〉 = 1
2

4∑
i=1

|i〉.

2 Apply Ox, then U, then Ox again.
3 Perform the measurement consisting of a projection onto

the state |ψ〉 and its orthogonal complement.
4 If the outcome is |ψ〉, output 1, and otherwise 0.

Theorem
The above algorithm uses 2 queries and computes the EXACT2
function on 4 bits with certainty.

The idea behind this algorithm can be extended to give an
algorithm which distinguishes between |x| = n/2 and
|x| ∈ {0, 1, n − 1, n}, for all even n, using 2 queries.

EXACT2 algorithm

1 Create the state

|ψ〉 = 1
2

4∑
i=1

|i〉.

2 Apply Ox, then U, then Ox again.
3 Perform the measurement consisting of a projection onto

the state |ψ〉 and its orthogonal complement.
4 If the outcome is |ψ〉, output 1, and otherwise 0.

Theorem
The above algorithm uses 2 queries and computes the EXACT2
function on 4 bits with certainty.

The idea behind this algorithm can be extended to give an
algorithm which distinguishes between |x| = n/2 and
|x| ∈ {0, 1, n − 1, n}, for all even n, using 2 queries.

Remaining functions on 3 bits

This algorithm can clearly also be used to compute
EXACT2 on 3 bits.

For the other functions on 3 bits (x1 ∧ (x2 ∨ x3) and
(x1 ∧ x2)∨ (x̄1 ∧ x̄2 ∧ x3)) we also found explicit exact
quantum query algorithms.

This was via a somewhat painful process of manually
rounding real-valued solutions to the SDP to produce
rational, exact solutions.

But could there be an optimal quantum query algorithm
for these functions based only on computing the parity of
pairs of bits?

Remaining functions on 3 bits

This algorithm can clearly also be used to compute
EXACT2 on 3 bits.

For the other functions on 3 bits (x1 ∧ (x2 ∨ x3) and
(x1 ∧ x2)∨ (x̄1 ∧ x̄2 ∧ x3)) we also found explicit exact
quantum query algorithms.

This was via a somewhat painful process of manually
rounding real-valued solutions to the SDP to produce
rational, exact solutions.

But could there be an optimal quantum query algorithm
for these functions based only on computing the parity of
pairs of bits?

Remaining functions on 3 bits

This algorithm can clearly also be used to compute
EXACT2 on 3 bits.

For the other functions on 3 bits (x1 ∧ (x2 ∨ x3) and
(x1 ∧ x2)∨ (x̄1 ∧ x̄2 ∧ x3)) we also found explicit exact
quantum query algorithms.

This was via a somewhat painful process of manually
rounding real-valued solutions to the SDP to produce
rational, exact solutions.

But could there be an optimal quantum query algorithm
for these functions based only on computing the parity of
pairs of bits?

Remaining functions on 3 bits

This algorithm can clearly also be used to compute
EXACT2 on 3 bits.

For the other functions on 3 bits (x1 ∧ (x2 ∨ x3) and
(x1 ∧ x2)∨ (x̄1 ∧ x̄2 ∧ x3)) we also found explicit exact
quantum query algorithms.

This was via a somewhat painful process of manually
rounding real-valued solutions to the SDP to produce
rational, exact solutions.

But could there be an optimal quantum query algorithm
for these functions based only on computing the parity of
pairs of bits?

No!

Proposition
Let f : {0, 1}n → {0, 1} be a boolean function, and let d be the
degree of f as an n-variate polynomial over F2. Then any
decision tree which can query the parity of any subset of the
input variables at unit cost must make at least d queries to the
input to compute f with certainty.

Proof sketch: the function computed by any decision tree
on parities with depth D can be written as pT0 + (1 + p)T1
for some degree 1 polynomial p over F2 and decision trees
T0, T1 of depth at most D − 1.

The functions EXACT2 on 3 bits, x1 ∧ (x2 ∨ x3) and
(x1 ∧ x2)∨ (x̄1 ∧ x̄2 ∧ x3) all have degree 3.

Therefore, optimal quantum algorithms for these
functions cannot be obtained by computing parities of
pairs of bits.

No!

Proposition
Let f : {0, 1}n → {0, 1} be a boolean function, and let d be the
degree of f as an n-variate polynomial over F2. Then any
decision tree which can query the parity of any subset of the
input variables at unit cost must make at least d queries to the
input to compute f with certainty.

Proof sketch: the function computed by any decision tree
on parities with depth D can be written as pT0 + (1 + p)T1
for some degree 1 polynomial p over F2 and decision trees
T0, T1 of depth at most D − 1.

The functions EXACT2 on 3 bits, x1 ∧ (x2 ∨ x3) and
(x1 ∧ x2)∨ (x̄1 ∧ x̄2 ∧ x3) all have degree 3.

Therefore, optimal quantum algorithms for these
functions cannot be obtained by computing parities of
pairs of bits.

No!

Proposition
Let f : {0, 1}n → {0, 1} be a boolean function, and let d be the
degree of f as an n-variate polynomial over F2. Then any
decision tree which can query the parity of any subset of the
input variables at unit cost must make at least d queries to the
input to compute f with certainty.

Proof sketch: the function computed by any decision tree
on parities with depth D can be written as pT0 + (1 + p)T1
for some degree 1 polynomial p over F2 and decision trees
T0, T1 of depth at most D − 1.

The functions EXACT2 on 3 bits, x1 ∧ (x2 ∨ x3) and
(x1 ∧ x2)∨ (x̄1 ∧ x̄2 ∧ x3) all have degree 3.

Therefore, optimal quantum algorithms for these
functions cannot be obtained by computing parities of
pairs of bits.

From small separations to growing
separations

Given a function f : {0, 1}k → {0, 1} such that QE(f) < D(f),
we can amplify this separation.

Just define a new function fn : {0, 1}nk → {0, 1} by dividing
the input into blocks b1, . . . , bn of k bits each, and set

fn(x1, . . . , xnk) = g(f (b1), f (b2), . . . , f (bn))

for some g : {0, 1}n → {0, 1} such that D(g) = n.
Then D(fn) = n D(f) and QE(fn) 6 n QE(f).

Example

Define EXACT`2 : {0, 1}4` → {0, 1} as follows. Split the input x
into blocks containing 4 bits each, and set EXACT`2(x) = 1 if
each block contains exactly two 1s.
Then QE(EXACT`2) = 2` and D(EXACT`2) = 4`.

From small separations to growing
separations

Given a function f : {0, 1}k → {0, 1} such that QE(f) < D(f),
we can amplify this separation.
Just define a new function fn : {0, 1}nk → {0, 1} by dividing
the input into blocks b1, . . . , bn of k bits each, and set

fn(x1, . . . , xnk) = g(f (b1), f (b2), . . . , f (bn))

for some g : {0, 1}n → {0, 1} such that D(g) = n.

Then D(fn) = n D(f) and QE(fn) 6 n QE(f).

Example

Define EXACT`2 : {0, 1}4` → {0, 1} as follows. Split the input x
into blocks containing 4 bits each, and set EXACT`2(x) = 1 if
each block contains exactly two 1s.
Then QE(EXACT`2) = 2` and D(EXACT`2) = 4`.

From small separations to growing
separations

Given a function f : {0, 1}k → {0, 1} such that QE(f) < D(f),
we can amplify this separation.
Just define a new function fn : {0, 1}nk → {0, 1} by dividing
the input into blocks b1, . . . , bn of k bits each, and set

fn(x1, . . . , xnk) = g(f (b1), f (b2), . . . , f (bn))

for some g : {0, 1}n → {0, 1} such that D(g) = n.
Then D(fn) = n D(f) and QE(fn) 6 n QE(f).

Example

Define EXACT`2 : {0, 1}4` → {0, 1} as follows. Split the input x
into blocks containing 4 bits each, and set EXACT`2(x) = 1 if
each block contains exactly two 1s.
Then QE(EXACT`2) = 2` and D(EXACT`2) = 4`.

From small separations to growing
separations

Given a function f : {0, 1}k → {0, 1} such that QE(f) < D(f),
we can amplify this separation.
Just define a new function fn : {0, 1}nk → {0, 1} by dividing
the input into blocks b1, . . . , bn of k bits each, and set

fn(x1, . . . , xnk) = g(f (b1), f (b2), . . . , f (bn))

for some g : {0, 1}n → {0, 1} such that D(g) = n.
Then D(fn) = n D(f) and QE(fn) 6 n QE(f).

Example

Define EXACT`2 : {0, 1}4` → {0, 1} as follows. Split the input x
into blocks containing 4 bits each, and set EXACT`2(x) = 1 if
each block contains exactly two 1s.
Then QE(EXACT`2) = 2` and D(EXACT`2) = 4`.

Nonadaptive exact quantum query complexity

We now turn to essentially the strictest non-trivial model of
query complexity imaginable: nonadaptive query complexity.

A nonadaptive (classical or quantum) query algorithm
cannot choose queries based on the result of previous
queries.

In other words, the queries must all be made up front, in
parallel.

Let Dna(f), Qna
E (f) be the nonadaptive classical and

quantum exact query complexities of f .

Proposition
For any total boolean function f depending on n variables,

Dna(f) = n.

Nonadaptive exact quantum query complexity

We now turn to essentially the strictest non-trivial model of
query complexity imaginable: nonadaptive query complexity.

A nonadaptive (classical or quantum) query algorithm
cannot choose queries based on the result of previous
queries.

In other words, the queries must all be made up front, in
parallel.

Let Dna(f), Qna
E (f) be the nonadaptive classical and

quantum exact query complexities of f .

Proposition
For any total boolean function f depending on n variables,

Dna(f) = n.

Nonadaptive exact quantum query complexity

We now turn to essentially the strictest non-trivial model of
query complexity imaginable: nonadaptive query complexity.

A nonadaptive (classical or quantum) query algorithm
cannot choose queries based on the result of previous
queries.

In other words, the queries must all be made up front, in
parallel.

Let Dna(f), Qna
E (f) be the nonadaptive classical and

quantum exact query complexities of f .

Proposition
For any total boolean function f depending on n variables,

Dna(f) = n.

Nonadaptive exact quantum query complexity
Nonadaptive quantum query complexity is more complicated.
But it turns out that we can still completely characterise it.

For any f : {0, 1}n → {0, 1}, define the subspace

Sf := {z : ∀x, f (x) = f (x + z)}.

For any subspace S ⊆ {0, 1}n, let S⊥ denote the orthogonal
subspace to S, i.e. S⊥ = {x : x · s = 0,∀ s ∈ S}.

Theorem
For any boolean function f : {0, 1}n → {0, 1},

Qna
E (f) = min

x∈{0,1}n
max
y∈S⊥f

d(x, y).

Here d(x, y) is the Hamming distance between x and y.

Nonadaptive exact quantum query complexity
Nonadaptive quantum query complexity is more complicated.
But it turns out that we can still completely characterise it.

For any f : {0, 1}n → {0, 1}, define the subspace

Sf := {z : ∀x, f (x) = f (x + z)}.

For any subspace S ⊆ {0, 1}n, let S⊥ denote the orthogonal
subspace to S, i.e. S⊥ = {x : x · s = 0,∀ s ∈ S}.

Theorem
For any boolean function f : {0, 1}n → {0, 1},

Qna
E (f) = min

x∈{0,1}n
max
y∈S⊥f

d(x, y).

Here d(x, y) is the Hamming distance between x and y.

Nonadaptive exact quantum query complexity
Nonadaptive quantum query complexity is more complicated.
But it turns out that we can still completely characterise it.

For any f : {0, 1}n → {0, 1}, define the subspace

Sf := {z : ∀x, f (x) = f (x + z)}.

For any subspace S ⊆ {0, 1}n, let S⊥ denote the orthogonal
subspace to S, i.e. S⊥ = {x : x · s = 0,∀ s ∈ S}.

Theorem
For any boolean function f : {0, 1}n → {0, 1},

Qna
E (f) = min

x∈{0,1}n
max
y∈S⊥f

d(x, y).

Here d(x, y) is the Hamming distance between x and y.

Nonadaptive exact quantum query complexity

In fact, the following explicit algorithm succeeds with
certainty and achieves the above bound.

1 For some k, let t ∈ {0, 1}n be a bit-string such that
maxy∈S⊥f

d(t, y) = k.

2 Produce the state of n qubits 1
|S⊥f |1/2

∑
s∈t+S⊥f

(−1)s·x|s〉 at a

cost of k queries.

3 Perform Hadamards on every qubit of the resulting state
and measure to get outcome x̃.

4 Output f (x̃).

Proposition

f (x̃) = f (x).

Nonadaptive exact quantum query complexity

In fact, the following explicit algorithm succeeds with
certainty and achieves the above bound.

1 For some k, let t ∈ {0, 1}n be a bit-string such that
maxy∈S⊥f

d(t, y) = k.

2 Produce the state of n qubits 1
|S⊥f |1/2

∑
s∈t+S⊥f

(−1)s·x|s〉 at a

cost of k queries.

3 Perform Hadamards on every qubit of the resulting state
and measure to get outcome x̃.

4 Output f (x̃).

Proposition

f (x̃) = f (x).

Nonadaptive exact quantum query complexity

In fact, the following explicit algorithm succeeds with
certainty and achieves the above bound.

1 For some k, let t ∈ {0, 1}n be a bit-string such that
maxy∈S⊥f

d(t, y) = k.

2 Produce the state of n qubits 1
|S⊥f |1/2

∑
s∈t+S⊥f

(−1)s·x|s〉 at a

cost of k queries.

3 Perform Hadamards on every qubit of the resulting state
and measure to get outcome x̃.

4 Output f (x̃).

Proposition

f (x̃) = f (x).

Nonadaptive exact quantum query complexity

In fact, the following explicit algorithm succeeds with
certainty and achieves the above bound.

1 For some k, let t ∈ {0, 1}n be a bit-string such that
maxy∈S⊥f

d(t, y) = k.

2 Produce the state of n qubits 1
|S⊥f |1/2

∑
s∈t+S⊥f

(−1)s·x|s〉 at a

cost of k queries.

3 Perform Hadamards on every qubit of the resulting state
and measure to get outcome x̃.

4 Output f (x̃).

Proposition

f (x̃) = f (x).

Nonadaptive exact quantum query complexity

In fact, the following explicit algorithm succeeds with
certainty and achieves the above bound.

1 For some k, let t ∈ {0, 1}n be a bit-string such that
maxy∈S⊥f

d(t, y) = k.

2 Produce the state of n qubits 1
|S⊥f |1/2

∑
s∈t+S⊥f

(−1)s·x|s〉 at a

cost of k queries.

3 Perform Hadamards on every qubit of the resulting state
and measure to get outcome x̃.

4 Output f (x̃).

Proposition

f (x̃) = f (x).

Some consequences

We can harness this characterisation to prove a number of
results. For example, we have the following corollaries.

If f : {0, 1}n → {0, 1} depends on all n input bits,
Qna

E (f) > dn/2e. This was previously known [AM ’10].

If f : {0, 1}n → {0, 1} does not satisfy f (x) = f (x + a) for
some a, Qna

E (f) = n.

So almost all functions have Qna
E (f) = n.

For any f : {0, 1}n → {0, 1} such that f (x) = f (x̄) for all x,
Qna

E (f) 6 n − 1.

Some consequences

We can harness this characterisation to prove a number of
results. For example, we have the following corollaries.

If f : {0, 1}n → {0, 1} depends on all n input bits,
Qna

E (f) > dn/2e. This was previously known [AM ’10].

If f : {0, 1}n → {0, 1} does not satisfy f (x) = f (x + a) for
some a, Qna

E (f) = n.

So almost all functions have Qna
E (f) = n.

For any f : {0, 1}n → {0, 1} such that f (x) = f (x̄) for all x,
Qna

E (f) 6 n − 1.

Some consequences

We can harness this characterisation to prove a number of
results. For example, we have the following corollaries.

If f : {0, 1}n → {0, 1} depends on all n input bits,
Qna

E (f) > dn/2e. This was previously known [AM ’10].

If f : {0, 1}n → {0, 1} does not satisfy f (x) = f (x + a) for
some a, Qna

E (f) = n.

So almost all functions have Qna
E (f) = n.

For any f : {0, 1}n → {0, 1} such that f (x) = f (x̄) for all x,
Qna

E (f) 6 n − 1.

Some consequences

We can harness this characterisation to prove a number of
results. For example, we have the following corollaries.

If f : {0, 1}n → {0, 1} depends on all n input bits,
Qna

E (f) > dn/2e. This was previously known [AM ’10].

If f : {0, 1}n → {0, 1} does not satisfy f (x) = f (x + a) for
some a, Qna

E (f) = n.

So almost all functions have Qna
E (f) = n.

For any f : {0, 1}n → {0, 1} such that f (x) = f (x̄) for all x,
Qna

E (f) 6 n − 1.

Symmetric boolean functions

We can also prove the following quadrichotomy for symmetric
boolean functions (functions f : {0, 1}n → {0, 1} such that f (x)
depends only on |x|).

Corollary
If f : {0, 1}n → {0, 1} is symmetric, then exactly one of the
following four possibilities is true.

1 f is constant and Qna
E (f) = 0.

2 f is the PARITY function or its negation and
Qna

E (f) = dn/2e.
3 f satisfies f (x) = f (x̄) (but is not constant, the PARITY

function or its negation) and Qna
E (f) = n − 1.

4 f is none of the above and Qna
E (f) = n.

Conclusions

There is more to exact quantum query complexity than
computing parities.

We’ve numerically computed the quantum query
complexity of all boolean functions on up to 4 bits and
used this to develop new quantum algorithms.

As always, the basic open question still remains: can we
achieve QE(f) < D(f)/2?

Our numerical results inspire many tantalising conjectures.
For example:

Conjecture
For any n, the EXACTk function on n bits can be computed
exactly using max{k, n − k} quantum queries.

Conclusions

There is more to exact quantum query complexity than
computing parities.

We’ve numerically computed the quantum query
complexity of all boolean functions on up to 4 bits and
used this to develop new quantum algorithms.

As always, the basic open question still remains: can we
achieve QE(f) < D(f)/2?

Our numerical results inspire many tantalising conjectures.
For example:

Conjecture
For any n, the EXACTk function on n bits can be computed
exactly using max{k, n − k} quantum queries.

Thanks!

arXiv:1111.0475

(joint work with Richard Jozsa and Graeme Mitchison)

arXiv:1111.0475

