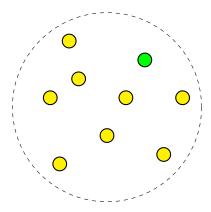
$2 + \varepsilon$ quantum learning algorithms

Ashley Montanaro

Talk based on joint work with Andris Ambainis and ongoing joint work with Scott Aaronson, David Chen, Daniel Gottesman and Vincent Liew.

20 March 2013

What is learning?



In this talk

Learning a set $S \equiv$ identifying an arbitrary, unknown object picked from *S*.

This talk

 ▲ A little learning is a dangerous thing; drink deep, or taste not the Pierian spring: there shallow draughts intoxicate the brain, and drinking largely sobers us again.

"

— Alexander Pope

This talk

6 A little learning is a dangerous thing; drink deep, or taste not the Pierian spring: there shallow draughts intoxicate the brain, and drinking largely sobers us again.

— Alexander Pope

77

On this principle, I'll talk about three optimal quantum algorithms for learning an unknown...

- ... bit-string, given access to "wildcard" queries;
- ... low-degree multilinear polynomial;
- ... stabilizer state.

Bonus mini-result: A composition theorem for classical decision tree complexity.

• We are given access to an unknown *n*-bit string *x*.

- We are given access to an unknown *n*-bit string *x*.
- Our task is to determine *x* using the minimum expected number of queries.

- We are given access to an unknown *n*-bit string *x*.
- Our task is to determine *x* using the minimum expected number of queries.
- The different possible queries are given by strings s ∈ {0, 1, *}ⁿ. A query q_x(s) returns 1 if x_i = s_i for all *i* such that s_i ≠ *, and returns 0 otherwise.

- We are given access to an unknown *n*-bit string *x*.
- Our task is to determine *x* using the minimum expected number of queries.
- The different possible queries are given by strings s ∈ {0, 1, *}ⁿ. A query q_x(s) returns 1 if x_i = s_i for all i such that s_i ≠ *, and returns 0 otherwise.
- A generalisation of the simple "standard" model where each query is to an individual bit of *x*.

- We are given access to an unknown *n*-bit string *x*.
- Our task is to determine *x* using the minimum expected number of queries.
- The different possible queries are given by strings s ∈ {0, 1, *}ⁿ. A query q_x(s) returns 1 if x_i = s_i for all i such that s_i ≠ *, and returns 0 otherwise.
- A generalisation of the simple "standard" model where each query is to an individual bit of *x*.

Example

Imagine the hidden string is x = 01101. Then querying...

- 0 * 1 * 1 returns 1;
- *1 * 1* returns 0.

- We can also think of a query as specifying a subset *S* of the bits, and a "guess" *y*_{*S*}.
- Classically, we need *n* queries to determine *x* (each query gives one bit of information).

- We can also think of a query as specifying a subset *S* of the bits, and a "guess" *y*_{*S*}.
- Classically, we need *n* queries to determine *x* (each query gives one bit of information).
- In the quantum case, we imagine we have access to an oracle which maps

 $|s\rangle|z\rangle\mapsto|s\rangle|z\oplus q_x(s)\rangle.$

- We can also think of a query as specifying a subset *S* of the bits, and a "guess" *y*_{*S*}.
- Classically, we need *n* queries to determine *x* (each query gives one bit of information).
- In the quantum case, we imagine we have access to an oracle which maps

 $|s\rangle|z\rangle\mapsto|s\rangle|z\oplus q_x(s)\rangle.$

Theorem

Search with wildcards can be solved with $O(\sqrt{n})$ quantum queries on average.

- We can also think of a query as specifying a subset *S* of the bits, and a "guess" *y*_{*S*}.
- Classically, we need *n* queries to determine *x* (each query gives one bit of information).
- In the quantum case, we imagine we have access to an oracle which maps

 $|s\rangle|z\rangle\mapsto|s\rangle|z\oplus q_x(s)\rangle.$

Theorem

Search with wildcards can be solved with $O(\sqrt{n})$ quantum queries on average.

Contrast: In the standard model, there is a quantum speed-up by about a factor of 2 [van Dam '98], and this is optimal.

Solving SWW

The solution to SWW is based on this claim:

Measurement Lemma

Fix $n \ge 1$ and, for any $0 \le k \le n$, set

$$|\psi_x^k\rangle := \frac{1}{\binom{n}{k}^{1/2}} \sum_{S \subseteq [n], |S|=k} |S\rangle |x_S\rangle,$$

where $|x_S\rangle := \bigotimes_{i \in S} |x_i\rangle$. Then, for any $k = n - O(\sqrt{n})$, there is a quantum measurement (POVM) which, on input $|\psi_x^k\rangle$, outputs \tilde{x} such that the expected Hamming distance $d(x, \tilde{x})$ is O(1).

Solving SWW

The solution to SWW is based on this claim:

Measurement Lemma

Fix $n \ge 1$ and, for any $0 \le k \le n$, set

$$|\Psi_x^k\rangle := \frac{1}{\binom{n}{k}^{1/2}} \sum_{S \subseteq [n], |S|=k} |S\rangle |x_S\rangle,$$

where $|x_S\rangle := \bigotimes_{i \in S} |x_i\rangle$. Then, for any $k = n - O(\sqrt{n})$, there is a quantum measurement (POVM) which, on input $|\psi_x^k\rangle$, outputs \tilde{x} such that the expected Hamming distance $d(x, \tilde{x})$ is O(1).

This is surprising because the equivalent classical statement is not true!

Solving SWW

The solution to SWW is based on this claim:

Measurement Lemma

Fix $n \ge 1$ and, for any $0 \le k \le n$, set

$$|\Psi_x^k\rangle := \frac{1}{\binom{n}{k}^{1/2}} \sum_{S \subseteq [n], |S|=k} |S\rangle |x_S\rangle,$$

where $|x_S\rangle := \bigotimes_{i \in S} |x_i\rangle$. Then, for any $k = n - O(\sqrt{n})$, there is a quantum measurement (POVM) which, on input $|\psi_x^k\rangle$, outputs \tilde{x} such that the expected Hamming distance $d(x, \tilde{x})$ is O(1).

This is surprising because the equivalent classical statement is not true!

Why does this let us solve SWW?

• Our algorithm for SWW repeatedly uses the lemma to learn $O(\sqrt{n})$ bits of *x* at a time in superposition.

- Our algorithm for SWW repeatedly uses the lemma to learn $O(\sqrt{n})$ bits of *x* at a time in superposition.
- Imagine we have $|\psi_x^k\rangle \propto \sum_{S\subseteq [n], |S|=k} |S\rangle |x_S\rangle$. For k' > k, this can be mapped to

$$\sum_{S \subseteq [n], |S|=k} |S\rangle |x_S\rangle \left(\sum_{T:S \subseteq T, |T|=k'} |T\rangle\right)$$

- Our algorithm for SWW repeatedly uses the lemma to learn $O(\sqrt{n})$ bits of *x* at a time in superposition.
- Imagine we have $|\psi_x^k\rangle \propto \sum_{S \subseteq [n], |S|=k} |S\rangle |x_S\rangle$. For k' > k, this can be mapped to

$$\sum_{S \subseteq [n], |S|=k} |S\rangle |x_S\rangle \left(\sum_{T:S \subseteq T, |T|=k'} |T\rangle\right)$$

$$\mapsto \sum_{T:T \subseteq [n], |T|=k'} |T\rangle \left(\sum_{S:S \subseteq T, |S|=k} |S\rangle |x_S\rangle\right)$$

- Our algorithm for SWW repeatedly uses the lemma to learn $O(\sqrt{n})$ bits of *x* at a time in superposition.
- Imagine we have $|\psi_x^k\rangle \propto \sum_{S \subseteq [n], |S|=k} |S\rangle |x_S\rangle$. For k' > k, this can be mapped to

$$\sum_{S \subseteq [n], |S|=k} |S\rangle |x_S\rangle \left(\sum_{T:S \subseteq T, |T|=k'} |T\rangle\right)$$

$$\mapsto \sum_{T:T \subseteq [n], |T|=k'} |T\rangle \left(\sum_{S:S \subseteq T, |S|=k} |S\rangle |x_S\rangle\right) = \sum_{T:|T|=k'} |T\rangle |\psi_{x_T}^k\rangle,$$

so if we can map $|\psi_{x_T}^k\rangle \mapsto |x_T\rangle$, we've made $|\psi_x^{k'}\rangle$.

- Our algorithm for SWW repeatedly uses the lemma to learn $O(\sqrt{n})$ bits of *x* at a time in superposition.
- Imagine we have $|\psi_x^k\rangle \propto \sum_{S \subseteq [n], |S|=k} |S\rangle |x_S\rangle$. For k' > k, this can be mapped to

$$\sum_{S \subseteq [n], |S|=k} |S\rangle |x_S\rangle \left(\sum_{T:S \subseteq T, |T|=k'} |T\rangle\right)$$

$$\mapsto \sum_{T:T \subseteq [n], |T|=k'} |T\rangle \left(\sum_{S:S \subseteq T, |S|=k} |S\rangle |x_S\rangle\right) = \sum_{T:|T|=k'} |T\rangle |\psi_{x_T}^k\rangle,$$

so if we can map $|\psi_{x_T}^k\rangle \mapsto |x_T\rangle$, we've made $|\psi_x^{k'}\rangle$.

• By the lemma, we can do this when $k = k' - O(\sqrt{k'})...$

- Our algorithm for SWW repeatedly uses the lemma to learn $O(\sqrt{n})$ bits of *x* at a time in superposition.
- Imagine we have $|\psi_x^k\rangle \propto \sum_{S \subseteq [n], |S|=k} |S\rangle |x_S\rangle$. For k' > k, this can be mapped to

$$\sum_{S \subseteq [n], |S|=k} |S\rangle |x_S\rangle \left(\sum_{T:S \subseteq T, |T|=k'} |T\rangle\right)$$

$$\mapsto \sum_{T:T \subseteq [n], |T|=k'} |T\rangle \left(\sum_{S:S \subseteq T, |S|=k} |S\rangle |x_S\rangle\right) = \sum_{T:|T|=k'} |T\rangle |\psi_{x_T}^k\rangle,$$

so if we can map $|\psi_{x_T}^k\rangle \mapsto |x_T\rangle$, we've made $|\psi_x^{k'}\rangle$.

- By the lemma, we can do this when $k = k' O(\sqrt{k'})...$
- ... but after each measurement, an expected *O*(1) bits are incorrect.

- Our algorithm for SWW repeatedly uses the lemma to learn $O(\sqrt{n})$ bits of *x* at a time in superposition.
- Imagine we have $|\psi_x^k\rangle \propto \sum_{S \subseteq [n], |S|=k} |S\rangle |x_S\rangle$. For k' > k, this can be mapped to

$$\begin{split} & \sum_{S \subseteq [n], |S| = k} |S\rangle |x_S\rangle \left(\sum_{T:S \subseteq T, |T| = k'} |T\rangle \right) \\ \mapsto & \sum_{T:T \subseteq [n], |T| = k'} |T\rangle \left(\sum_{S:S \subseteq T, |S| = k} |S\rangle |x_S\rangle \right) = \sum_{T:|T| = k'} |T\rangle |\psi_{x_T}^k\rangle, \end{split}$$

so if we can map $|\psi_{x_T}^k\rangle \mapsto |x_T\rangle$, we've made $|\psi_x^{k'}\rangle$.

- By the lemma, we can do this when $k = k' O(\sqrt{k'})...$
- ... but after each measurement, an expected *O*(1) bits are incorrect.
- How to fix these?

Proposed by [Dorfman '43] as a means of "weeding out all syphilitic men called up for induction".

Proposed by [Dorfman '43] as a means of "weeding out all syphilitic men called up for induction".

The abstract problem is:

• We have a set of *n* items $x_1, \ldots, x_n \in \{0, 1\}$.

Proposed by [Dorfman '43] as a means of "weeding out all syphilitic men called up for induction".

The abstract problem is:

- We have a set of *n* items $x_1, \ldots, x_n \in \{0, 1\}$.
- Exactly $k \ll n$ items x_i are special and have $x_i = 1$.

Proposed by [Dorfman '43] as a means of "weeding out all syphilitic men called up for induction".

The abstract problem is:

- We have a set of *n* items $x_1, \ldots, x_n \in \{0, 1\}$.
- Exactly $k \ll n$ items x_i are special and have $x_i = 1$.
- We are allowed to query any subset *S* ⊆ [*n*] := {1, . . . , *n*}. A query returns 1 if any items in *S* are special.

Proposed by [Dorfman '43] as a means of "weeding out all syphilitic men called up for induction".

The abstract problem is:

- We have a set of *n* items $x_1, \ldots, x_n \in \{0, 1\}$.
- Exactly $k \ll n$ items x_i are special and have $x_i = 1$.
- We are allowed to query any subset *S* ⊆ [*n*] := {1, . . . , *n*}. A query returns 1 if any items in *S* are special.
- We want to output the identities of all of the special items using the minimal number of queries.

Proposed by [Dorfman '43] as a means of "weeding out all syphilitic men called up for induction".

The abstract problem is:

- We have a set of *n* items $x_1, \ldots, x_n \in \{0, 1\}$.
- Exactly $k \ll n$ items x_i are special and have $x_i = 1$.
- We are allowed to query any subset *S* ⊆ [*n*] := {1, . . . , *n*}. A query returns 1 if any items in *S* are special.
- We want to output the identities of all of the special items using the minimal number of queries.

In particular, we would like to minimise the dependence on *n*.

Classical results

- The number of classical queries required to solve CGT is $\Theta(k \log(n/k))$.
 - Lower bound: information-theoretic argument.
 - Upper bound: (essentially) binary search.

Classical results

- The number of classical queries required to solve CGT is $\Theta(k \log(n/k))$.
 - Lower bound: information-theoretic argument.
 - Upper bound: (essentially) binary search.

• Many applications known: molecular biology, data streaming algorithms, compressed sensing, pattern matching in strings, ...

Classical results

- The number of classical queries required to solve CGT is $\Theta(k \log(n/k))$.
 - Lower bound: information-theoretic argument.
 - Upper bound: (essentially) binary search.

- Many applications known: molecular biology, data streaming algorithms, compressed sensing, pattern matching in strings, ...
- See the book "Combinatorial Group Testing and Its Applications" [Du and Hwang '00] for more.

Quantum algorithms for CGT

The k = 1 case

If k = 1, CGT can be solved exactly using one quantum query.

Quantum algorithms for CGT

The k = 1 case If k = 1, CGT can be solved exactly using one quantum query.

Basic idea:

• To learn x, suffices to be able to compute the function $x \cdot s = \bigoplus_i x_i s_i$ for arbitrary $s \in \{0, 1\}^n$ (as with e.g. the quantum oracle interrogation algorithm of [van Dam '98]).

Quantum algorithms for CGT

The k = 1 case If k = 1, CGT can be solved exactly using one quantum query.

Basic idea:

- To learn *x*, suffices to be able to compute the function $x \cdot s = \bigoplus_i x_i s_i$ for arbitrary $s \in \{0, 1\}^n$ (as with e.g. the quantum oracle interrogation algorithm of [van Dam '98]).
- In the CGT problem, we have access to an oracle which computes $f(s) = \bigvee_i x_i s_i$ for arbitrary $s \in \{0, 1\}^n$. But if $|x| \leq 1$, then for any s, $\bigvee_i x_i s_i = x \cdot s$.

Generalising this idea to arbitrary k

Theorem

CGT can be solved using O(k) quantum queries on average.

Theorem

CGT can be solved using O(k) quantum queries on average.

• Construct $S \subseteq [n]$ by including each $i \in [n]$ with prob. 1/k.

Theorem

- Construct $S \subseteq [n]$ by including each $i \in [n]$ with prob. 1/k.
- Run the k = 1 algorithm on the subset of bits in *S*.

Theorem

- Construct $S \subseteq [n]$ by including each $i \in [n]$ with prob. 1/k.
- Run the k = 1 algorithm on the subset of bits in *S*.
- If *S* contains exactly one 1 bit at position *i*, which will occur with probability at least $(1 1/k)^{k-1} \ge 1/e$, we are guaranteed to learn *i*.

Theorem

- Construct $S \subseteq [n]$ by including each $i \in [n]$ with prob. 1/k.
- Run the k = 1 algorithm on the subset of bits in *S*.
- If *S* contains exactly one 1 bit at position *i*, which will occur with probability at least $(1 1/k)^{k-1} \ge 1/e$, we are guaranteed to learn *i*.
- We can check whether the index *i* we received really is a 1 by making one more query to index *i*.

Theorem

- Construct $S \subseteq [n]$ by including each $i \in [n]$ with prob. 1/k.
- Run the k = 1 algorithm on the subset of bits in *S*.
- If *S* contains exactly one 1 bit at position *i*, which will occur with probability at least $(1 1/k)^{k-1} \ge 1/e$, we are guaranteed to learn *i*.
- We can check whether the index \tilde{i} we received really is a 1 by making one more query to index \tilde{i} .
- Following each successful query, we reduce *k* by 1 and exclude the bit that we just learned from future queries.

Theorem

- Construct $S \subseteq [n]$ by including each $i \in [n]$ with prob. 1/k.
- Run the k = 1 algorithm on the subset of bits in *S*.
- If *S* contains exactly one 1 bit at position *i*, which will occur with probability at least $(1 1/k)^{k-1} \ge 1/e$, we are guaranteed to learn *i*.
- We can check whether the index \tilde{i} we received really is a 1 by making one more query to index \tilde{i} .
- Following each successful query, we reduce *k* by 1 and exclude the bit that we just learned from future queries.
- In order to learn *x* completely, the expected overall number of queries used is *O*(*k*).

• When we measure $|\psi_x^k\rangle$, we get an outcome \tilde{x} such that $d(\tilde{x}, x) = O(1)$.

- When we measure $|\psi_x^k\rangle$, we get an outcome \tilde{x} such that $d(\tilde{x}, x) = O(1)$.
- We want to determine *x*, which is equivalent to determining x̃ ⊕ *x*, a string of Hamming weight O(1).

- When we measure $|\psi_x^k\rangle$, we get an outcome \tilde{x} such that $d(\tilde{x}, x) = O(1)$.
- We want to determine *x*, which is equivalent to determining x̃ ⊕ *x*, a string of Hamming weight O(1).
- A wildcard query corresponding to S ⊆ [n] and the string *x*_S returns 1 iff all bits of *x*_S are correct. Negating the output gives a query that behaves the same as a CGT query.

- When we measure $|\psi_x^k\rangle$, we get an outcome \tilde{x} such that $d(\tilde{x}, x) = O(1)$.
- We want to determine *x*, which is equivalent to determining x̃ ⊕ *x*, a string of Hamming weight O(1).
- A wildcard query corresponding to S ⊆ [n] and the string *x*_S returns 1 iff all bits of *x*_S are correct. Negating the output gives a query that behaves the same as a CGT query.
- So we can use the algorithm for CGT to find, and correct, all incorrect bits using *O*(1) queries.

Summary

• Using an efficient algorithm for CGT as a subroutine, we can solve search with wildcards using $O(\sqrt{n})$ queries.

• This is a square-root speed-up which (apparently) does not come from amplitude amplification or quantum walks.

• Open problem: Determine the quantum query complexity of CGT. We have an upper bound of O(k) and a lower bound of $\Omega(\sqrt{k})$.

Consider the following basic problem.

$$\xrightarrow{x} f \xrightarrow{f(x)}$$

We are given access to a function *f* : 𝔽ⁿ_q → 𝔽_q. We would like to identify *f*.

Consider the following basic problem.

$$\xrightarrow{x} f \xrightarrow{f(x)} f$$

- We are given access to a function *f* : 𝔽ⁿ_q → 𝔽_q. We would like to identify *f*.
- If f is arbitrary, we need q^n classical queries.

Consider the following basic problem.

$$\xrightarrow{x} f \xrightarrow{f(x)}$$

- We are given access to a function *f* : 𝔽ⁿ_q → 𝔽_q. We would like to identify *f*.
- If f is arbitrary, we need q^n classical queries.
- If *f* is picked from a known set *F*, we need at least $\log_q |\mathcal{F}|$ classical queries.

Consider the following basic problem.

$$\xrightarrow{x} f \xrightarrow{f(x)}$$

- We are given access to a function *f* : 𝔽ⁿ_q → 𝔽_q. We would like to identify *f*.
- If f is arbitrary, we need q^n classical queries.
- If *f* is picked from a known set *F*, we need at least $\log_q |\mathcal{F}|$ classical queries.
- On a quantum computer, we have the ability to query *f* in superposition, i.e. to perform the map

 $|x\rangle|z\rangle \mapsto |x\rangle|z+f(x)\rangle.$

 $f : \mathbb{F}_q^n \to \mathbb{F}_q$ is a degree *d* multilinear polynomial:

$$f(x) = \sum_{S \subseteq [n], |S| \leqslant d} \alpha_S \prod_{i \in S} x_i$$

for some coefficients $\alpha_S \in \mathbb{F}_q$, where $[n] := \{1, \ldots, n\}$.

• Note that for $S = \emptyset$ we define $\prod_{i \in S} x_i = 1$.

 $f : \mathbb{F}_q^n \to \mathbb{F}_q$ is a degree *d* multilinear polynomial:

$$f(x) = \sum_{S \subseteq [n], |S| \leqslant d} \alpha_S \prod_{i \in S} x_i$$

for some coefficients $\alpha_S \in \mathbb{F}_q$, where $[n] := \{1, \ldots, n\}$.

- Note that for $S = \emptyset$ we define $\prod_{i \in S} x_i = 1$.
- For example, any multilinear polynomial of degree 3 can be written as

$$f(x) = \alpha_{\emptyset} + \sum_{i} \alpha_{\{i\}} x_i + \sum_{i < j} \alpha_{\{i,j\}} x_i x_j + \sum_{i < j < k} \alpha_{\{i,j,k\}} x_i x_j x_k.$$

 $f : \mathbb{F}_q^n \to \mathbb{F}_q$ is a degree *d* multilinear polynomial:

$$f(x) = \sum_{S \subseteq [n], |S| \leqslant d} \alpha_S \prod_{i \in S} x_i$$

for some coefficients $\alpha_S \in \mathbb{F}_q$, where $[n] := \{1, \ldots, n\}$.

- Note that for $S = \emptyset$ we define $\prod_{i \in S} x_i = 1$.
- For example, any multilinear polynomial of degree 3 can be written as

$$f(x) = \alpha_{\emptyset} + \sum_{i} \alpha_{\{i\}} x_i + \sum_{i < j} \alpha_{\{i,j\}} x_i x_j + \sum_{i < j < k} \alpha_{\{i,j,k\}} x_i x_j x_k.$$

• In the important special case q = 2 (boolean functions), every polynomial is multilinear.

 $f : \mathbb{F}_q^n \to \mathbb{F}_q$ is a degree *d* multilinear polynomial:

$$f(x) = \sum_{S \subseteq [n], |S| \leqslant d} \alpha_S \prod_{i \in S} x_i$$

for some coefficients $\alpha_S \in \mathbb{F}_q$, where $[n] := \{1, \ldots, n\}$.

- Note that for $S = \emptyset$ we define $\prod_{i \in S} x_i = 1$.
- For example, any multilinear polynomial of degree 3 can be written as

$$f(x) = \alpha_{\emptyset} + \sum_{i} \alpha_{\{i\}} x_i + \sum_{i < j} \alpha_{\{i,j\}} x_i x_j + \sum_{i < j < k} \alpha_{\{i,j,k\}} x_i x_j x_k.$$

- In the important special case q = 2 (boolean functions), every polynomial is multilinear.
- The set of degree *d* polynomials over 𝔽₂ is known as the binary Reed-Muller code of order *d*.

Fact

The class of degree *d* multilinear polynomials in *n* variables over \mathbb{F}_q can be learned exactly using $O(n^d)$ classical queries, and this is optimal.

Fact

The class of degree *d* multilinear polynomials in *n* variables over \mathbb{F}_q can be learned exactly using $O(n^d)$ classical queries, and this is optimal.

- Upper bound: It suffices to query f(x) for all strings $x \in \mathbb{F}_q^n$ that contain only 0 and 1, and such that $|x| \leq d$.
- Lower bound: there are $q^{\Theta(n^d)}$ distinct multilinear degree d polynomials of n variables over \mathbb{F}_q ; each classical query to f only provides $\log_2 q$ bits of information.

Theorem

The class of degree *d* multilinear polynomials in *n* variables over \mathbb{F}_q can be learned exactly using $O(n^{d-1})$ quantum queries, and this is optimal.

Theorem

The class of degree *d* multilinear polynomials in *n* variables over \mathbb{F}_q can be learned exactly using $O(n^{d-1})$ quantum queries, and this is optimal.

Notes:

- The lower bound follows from Holevo's theorem.
- The Bernstein-Vazirani algorithm [Bernstein and Vazirani '97] is the case q = 2, d = 1.
- Rötteler previously gave a bounded-error quantum algorithm for the case q = 2, d = 2 [Rötteler '09].
- A quantum algorithm for estimating a quadratic form over the reals had previously been given by Jordan [Jordan '08].

We can learn an arbitrary linear function Fⁿ_q → F_q using only one query [de Beaudrap et al '02, van Dam et al '02].

- We can learn an arbitrary linear function Fⁿ_q → F_q using only one query [de Beaudrap et al '02, van Dam et al '02].
- For any degree *d* multilinear polynomial *f* : 𝔽ⁿ_q → 𝔽_q, define the discrete derivative of *f* in direction *i* ∈ [*n*] as

 $(\Delta_i f)(x) := f(x+e_i) - f(x).$

- We can learn an arbitrary linear function Fⁿ_q → F_q using only one query [de Beaudrap et al '02, van Dam et al '02].
- For any degree *d* multilinear polynomial *f* : 𝔽ⁿ_q → 𝔽_q, define the discrete derivative of *f* in direction *i* ∈ [*n*] as

 $(\Delta_i f)(x) := f(x+e_i) - f(x).$

● Claim: Taking the derivative of *f* in (*d*−1) different directions *i* leaves a linear function, which can be learned using one query.

- We can learn an arbitrary linear function Fⁿ_q → F_q using only one query [de Beaudrap et al '02, van Dam et al '02].
- For any degree *d* multilinear polynomial *f* : 𝔽ⁿ_q → 𝔽_q, define the discrete derivative of *f* in direction *i* ∈ [*n*] as

 $(\Delta_i f)(x) := f(x+e_i) - f(x).$

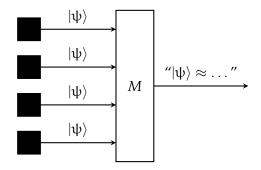
- Claim: Taking the derivative of *f* in (*d*−1) different directions *i* leaves a linear function, which can be learned using one query.
- Claim 2: Computing this derivative can be done using 2^{d-1} queries, and we need to do it for at most $\binom{n}{d-1}$ different sets.

- We can learn an arbitrary linear function Fⁿ_q → F_q using only one query [de Beaudrap et al '02, van Dam et al '02].
- For any degree *d* multilinear polynomial *f* : 𝔽ⁿ_q → 𝔽_q, define the discrete derivative of *f* in direction *i* ∈ [*n*] as

 $(\Delta_i f)(x) := f(x+e_i) - f(x).$

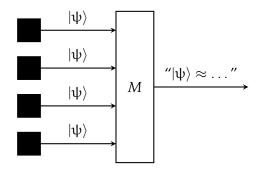
- Claim: Taking the derivative of *f* in (*d*−1) different directions *i* leaves a linear function, which can be learned using one query.
- Claim 2: Computing this derivative can be done using 2^{d-1} queries, and we need to do it for at most $\binom{n}{d-1}$ different sets.
- So we can learn f using $O(n^{d-1})$ queries.

Consider the basic task of quantum state estimation.



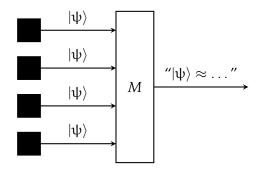
 Given the ability to produce copies of an unknown *n*-qubit quantum state |ψ⟩, we would like to estimate |ψ⟩.

Consider the basic task of quantum state estimation.



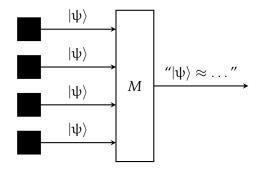
- Given the ability to produce copies of an unknown *n*-qubit quantum state |ψ⟩, we would like to estimate |ψ⟩.
- Standard quantum state tomography uses $2^{\Theta(n)}$ copies of $|\psi\rangle$ to achieve constant fidelity.

Consider the basic task of quantum state estimation.



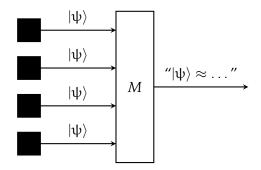
- Given the ability to produce copies of an unknown *n*-qubit quantum state |ψ⟩, we would like to estimate |ψ⟩.
- Standard quantum state tomography uses $2^{\Theta(n)}$ copies of $|\psi\rangle$ to achieve constant fidelity.
- Can we do better?

Consider the basic task of quantum state estimation.



To achieve constant fidelity between our guess and |ψ⟩, we need 2^{Ω(n)} copies of |ψ⟩.

Consider the basic task of quantum state estimation.



- To achieve constant fidelity between our guess and |ψ⟩, we need 2^{Ω(n)} copies of |ψ⟩.
- In order to determine |ψ⟩ efficiently (using poly(*n*) copies) we must restrict to classes of states which have efficient descriptions, or change the problem.

Some examples where this has been done:

- [Cramer et al '10] give an efficient algorithm for learning matrix product states.
- [Aaronson '06] introduces "pretty good tomography": relax to attempting to predict the outcomes of "most" measurements on the state.
- [Flammia and Liu '11] and [da Silva et al '11] give efficient algorithms for certifying the production of certain states.

Learning stabilizer states

Today I'll talk about a learning algorithm for another important class of quantum states with efficient descriptions: stabilizer states.

Learning stabilizer states

Today I'll talk about a learning algorithm for another important class of quantum states with efficient descriptions: stabilizer states.

- $|\psi\rangle$ is a stabilizer state of *n* qubits if there exists a subgroup *G* of 2^{*n*} pairwise commuting Pauli matrices (with ±1 phases) such that $M|\psi\rangle = |\psi\rangle$ for all $M \in G$.
- Examples include GHZ states, cluster states, states occurring in quantum error-correcting codes, ...

Today I'll talk about a learning algorithm for another important class of quantum states with efficient descriptions: stabilizer states.

- |ψ⟩ is a stabilizer state of *n* qubits if there exists a subgroup *G* of 2ⁿ pairwise commuting Pauli matrices (with ±1 phases) such that *M*|ψ⟩ = |ψ⟩ for all *M* ∈ *G*.
- Examples include GHZ states, cluster states, states occurring in quantum error-correcting codes, ...

A stabilizer state of *n* qubits is completely specified by a generating set for its stabilizer (*n* Pauli matrices on *n* qubits). There are $2^{\Theta(n^2)}$ stabilizer states of *n* qubits.

Prior work on learning stabilizer states

[Aaronson and Gottesman '08] have previously given quantum algorithms for learning an unknown stabilizer state $|\psi\rangle$:

- An algorithm which uses O(n) copies of $|\psi\rangle$ and runs in time $O(n^4)$;
- An algorithm which uses $O(n^2)$ copies of $|\psi\rangle$, runs in time $O(n^4)$ and uses only single-copy measurements.

Theorem

There is a quantum algorithm which learns an unknown stabilizer state $|\psi\rangle$ given access to O(n) copies of $|\psi\rangle$, and runs in time $O(n^3)$ (or better).

Theorem

There is a quantum algorithm which learns an unknown stabilizer state $|\psi\rangle$ given access to O(n) copies of $|\psi\rangle$, and runs in time $O(n^3)$ (or better).

Notes on this result:

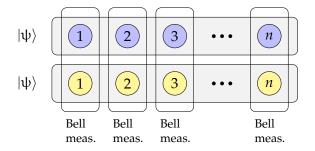
- By Holevo's theorem, this is optimal in terms of the scaling of the number of copies of |ψ⟩ used.
- Any algorithm for learning stabilizer states requires Ω(n²) time just to write the output.
- $\bullet\,$ The algorithm makes measurements on two copies of $|\psi\rangle\,$ at a time.

The algorithm

The algorithm is based on the following subroutine.

Bell sampling

- Create two copies of $|\psi\rangle$.
- **2** Measure each pair of qubits of $|\psi\rangle^{\otimes 2}$ in the Bell basis.



• For
$$z, x \in \{0, 1\}$$
, write $\sigma_{zx} := \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}^z \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}^x$.

• For $s \in \{0, 1\}^{2n}$, write

$$\sigma_s := \sigma_{s_1 s_2} \otimes \cdots \otimes \sigma_{s_{2n-1} s_{2n}}.$$

Fact

Let $|\psi\rangle$ be a state of *n* qubits. Performing Bell sampling on $|\psi\rangle^{\otimes 2}$ returns outcome *s* with probability

 $\frac{|\langle \psi | \sigma_{\scriptscriptstyle S} | \psi^* \rangle|^2}{2^n}$

 $\bullet~$ Up to an overall phase every stabilizer state $|\psi\rangle$ can be written in the form

$$|\psi\rangle = \frac{1}{\sqrt{|A|}} \sum_{x \in A} i^{\ell(x)} (-1)^{q(x)} |x\rangle,$$

where *A* is an affine subspace of \mathbb{F}_2^n , and $\ell, q : \{0, 1\}^n \to \{0, 1\}$ are linear and quadratic (respectively) polynomials over \mathbb{F}_2 [Dehaene and Moor '02].

• Up to an overall phase every stabilizer state $|\psi\rangle$ can be written in the form

$$|\psi\rangle = \frac{1}{\sqrt{|A|}} \sum_{x \in A} i^{\ell(x)} (-1)^{q(x)} |x\rangle,$$

where *A* is an affine subspace of \mathbb{F}_2^n , and $\ell, q : \{0, 1\}^n \to \{0, 1\}$ are linear and quadratic (respectively) polynomials over \mathbb{F}_2 [Dehaene and Moor '02].

• As ℓ is linear, $\ell(x) = s \cdot x$ for some $s \in \{0, 1\}^n$.

• Up to an overall phase every stabilizer state $|\psi\rangle$ can be written in the form

$$|\psi\rangle = \frac{1}{\sqrt{|A|}} \sum_{x \in A} i^{\ell(x)} (-1)^{q(x)} |x\rangle,$$

where *A* is an affine subspace of \mathbb{F}_2^n , and $\ell, q : \{0, 1\}^n \to \{0, 1\}$ are linear and quadratic (respectively) polynomials over \mathbb{F}_2 [Dehaene and Moor '02].

• As ℓ is linear, $\ell(x) = s \cdot x$ for some $s \in \{0, 1\}^n$.

• So
$$(-1)^{\ell(x)} = \prod_{i \in S} (-1)^{x_i}$$
 for some $S \subseteq [n]$.

• Up to an overall phase every stabilizer state $|\psi\rangle$ can be written in the form

$$|\psi\rangle = \frac{1}{\sqrt{|A|}} \sum_{x \in A} i^{\ell(x)} (-1)^{q(x)} |x\rangle,$$

where *A* is an affine subspace of \mathbb{F}_2^n , and $\ell, q : \{0, 1\}^n \to \{0, 1\}$ are linear and quadratic (respectively) polynomials over \mathbb{F}_2 [Dehaene and Moor '02].

• As ℓ is linear, $\ell(x) = s \cdot x$ for some $s \in \{0, 1\}^n$.

• So
$$(-1)^{\ell(x)} = \prod_{i \in S} (-1)^{x_i}$$
 for some $S \subseteq [n]$.

• Hence

$$|\psi^*\rangle = \sigma_{10}^{\otimes S} |\psi\rangle.$$

• If we perform Bell sampling on $|\psi\rangle^{\otimes 2}$, we receive outcome *t* with probability

$$\frac{|\langle \psi | \sigma_t | \psi^* \rangle|^2}{2^n} = \frac{|\langle \psi | \sigma_t \sigma_{10}^{\otimes S} | \psi \rangle|^2}{2^n}.$$

• If we perform Bell sampling on $|\psi\rangle^{\otimes 2}$, we receive outcome *t* with probability

$$\frac{|\langle \psi | \sigma_t | \psi^* \rangle|^2}{2^n} = \frac{|\langle \psi | \sigma_t \sigma_{10}^{\otimes S} | \psi \rangle|^2}{2^n}.$$

• Let *G* stabilize $|\psi\rangle$ and let *T* denote the set of strings $t \in \{0, 1\}^{2n}$ such that $\sigma_t \in G$, up to a phase. Then *T* is an *n*-dimensional linear subspace of \mathbb{F}_2^{2n} .

• If we perform Bell sampling on $|\psi\rangle^{\otimes 2}$, we receive outcome *t* with probability

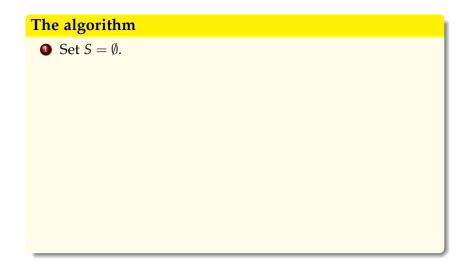
$$\frac{|\langle \psi | \sigma_t | \psi^* \rangle|^2}{2^n} = \frac{|\langle \psi | \sigma_t \sigma_{10}^{\otimes S} | \psi \rangle|^2}{2^n}.$$

- Let *G* stabilize $|\psi\rangle$ and let *T* denote the set of strings $t \in \{0, 1\}^{2n}$ such that $\sigma_t \in G$, up to a phase. Then *T* is an *n*-dimensional linear subspace of \mathbb{F}_2^{2n} .
- Bell sampling gives an outcome *r* which is uniformly distributed on the set {*t* ⊕ *s* : *t* ∈ *T*} for some *s* ∈ {0, 1}²ⁿ.

• For any two such outcomes r_1 , r_2 , the sum $r_1 \oplus r_2$ is uniformly distributed in *T*.

- For any two such outcomes r_1 , r_2 , the sum $r_1 \oplus r_2$ is uniformly distributed in *T*.
 - In order to find a basis for *T*, we can therefore produce k + 1 Bell samples r_0, r_1, \ldots, r_k and consider the uniformly random elements of *T* given by $r_1 \oplus r_0, r_2 \oplus r_0, \ldots, r_k \oplus r_0$.
 - If the dimension of the subspace of 𝔅²ⁿ₂ spanned by these vectors is *n*, any basis of this subspace is a basis for *T*.

- For any two such outcomes r_1 , r_2 , the sum $r_1 \oplus r_2$ is uniformly distributed in *T*.
 - In order to find a basis for *T*, we can therefore produce k + 1 Bell samples r_0, r_1, \ldots, r_k and consider the uniformly random elements of *T* given by $r_1 \oplus r_0, r_2 \oplus r_0, \ldots, r_k \oplus r_0$.
 - If the dimension of the subspace of 𝔽₂²ⁿ spanned by these vectors is *n*, any basis of this subspace is a basis for *T*.
- Although *T* does not contain information about phases, determining *T* suffices to uniquely determine $|\psi\rangle$.
 - Once we have found a basis for *T*, we can measure $|\psi\rangle$ in the eigenbasis of each corresponding Pauli matrix *M* to decide whether $M|\psi\rangle = |\psi\rangle$ or $M|\psi\rangle = -|\psi\rangle$.



- Set $S = \emptyset$.
- Create two copies of |ψ⟩ and perform Bell sampling, obtaining outcome r₀.

- Set $S = \emptyset$.
- Create two copies of |ψ⟩ and perform Bell sampling, obtaining outcome r₀.
- Solution Repeat the following 2*n* times:

- Set $S = \emptyset$.
- Create two copies of |ψ⟩ and perform Bell sampling, obtaining outcome r₀.
- Solution Repeat the following 2*n* times:
 - Create two copies of |ψ⟩ and perform Bell sampling, obtaining outcome *r*.
 - **2** Add $r \oplus r_0$ to *S*.

- Set $S = \emptyset$.
- Create two copies of |ψ⟩ and perform Bell sampling, obtaining outcome r₀.
- Solution Repeat the following 2*n* times:
 - Create two copies of |ψ⟩ and perform Bell sampling, obtaining outcome *r*.
 - **2** Add $r \oplus r_0$ to *S*.
- Otermine a basis for S; call this basis B.

The algorithm

- Set $S = \emptyset$.
- Create two copies of |ψ⟩ and perform Bell sampling, obtaining outcome r₀.

Solution Repeat the following 2*n* times:

- Create two copies of |ψ⟩ and perform Bell sampling, obtaining outcome *r*.
- **2** Add $r \oplus r_0$ to *S*.
- Otermine a basis for S; call this basis B.
- For each element of *B*, measure a copy of |ψ⟩ in the eigenbasis of the corresponding Pauli matrix *M* to determine whether *M*|ψ⟩ = |ψ⟩ or *M*|ψ⟩ = -|ψ⟩.

Summary of learning stabilizer states

• The algorithm uses O(n) copies of $|\psi\rangle$. Time complexity is dominated by finding a basis for $S(O(n^3)$ time or better).

Summary of learning stabilizer states

• The algorithm uses O(n) copies of $|\psi\rangle$. Time complexity is dominated by finding a basis for $S(O(n^3)$ time or better).

 The algorithm fails (i.e. does not identify |ψ⟩) if each of the 2*n* samples *r* ⊕ *r*₀ lies in a subspace of *T* of dimension at most *n* − 1. This occurs with probability at most 2^{−n}.

Bonus: a composition theorem for decision tree complexity

Imagine we want to compute a function of the form

$$h(x) = g(f^1(x^1), \ldots, f^n(x^n)),$$

where $x^i \in \{0, 1\}^{m_i}$, using the minimal number of classical queries to *x*.

Bonus: a composition theorem for decision tree complexity

Imagine we want to compute a function of the form

$$h(x) = g(f^1(x^1), \ldots, f^n(x^n)),$$

where $x^i \in \{0, 1\}^{m_i}$, using the minimal number of classical queries to *x*.

One strategy to compute *h*:

- Replace *g* with the function \overline{g} given by substituting the values taken by any constant functions f^i into *g*.
- Compute \bar{g} using efficient algorithms for f^1, \ldots, f^n as black boxes.

Bonus: a composition theorem for decision tree complexity

Imagine we want to compute a function of the form

$$h(x) = g(f^1(x^1), \ldots, f^n(x^n)),$$

where $x^i \in \{0, 1\}^{m_i}$, using the minimal number of classical queries to *x*.

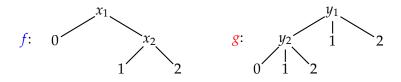
One strategy to compute *h*:

- Replace *g* with the function \overline{g} given by substituting the values taken by any constant functions f^i into *g*.
- Compute \bar{g} using efficient algorithms for f^1, \ldots, f^n as black boxes.

"Theorem": The x^i inputs are independent, so this is the most efficient way to compute g.

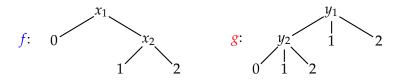
Counterexample to "theorem"

Let $f : \{0, 1\}^2 \rightarrow \{0, 1, 2\}$ and $g : \{0, 1, 2\}^2 \rightarrow \{0, 1, 2\}$ be defined by the decision trees below (where edges correspond to elements of $\{0, 1\}$ or $\{0, 1, 2\}$ in ascending order from left to right).

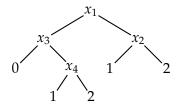


Counterexample to "theorem"

Let $f : \{0, 1\}^2 \rightarrow \{0, 1, 2\}$ and $g : \{0, 1, 2\}^2 \rightarrow \{0, 1, 2\}$ be defined by the decision trees below (where edges correspond to elements of $\{0, 1\}$ or $\{0, 1, 2\}$ in ascending order from left to right).



Set $h(x_1, x_2, x_3, x_4) = g(f(x_1, x_2), f(x_3, x_4))$. Then *h* can be computed using only 3 queries:



Theorem

The above algorithm is optimal when range(f^i) \subseteq {0, 1} for all *i*.

Theorem

The above algorithm is optimal when range(f^i) \subseteq {0, 1} for all *i*.

Some notes on this result:

• Also holds for computing partial functions and relations.

Theorem

The above algorithm is optimal when range(f^i) \subseteq {0, 1} for all *i*.

Some notes on this result:

- Also holds for computing partial functions and relations.
- Implies various corollaries, e.g. a direct sum theorem for decision tree complexity (a special case of a result of [Jain, Klauck and Santha '10]) and optimal bounds for iteratively defined functions.

Theorem

The above algorithm is optimal when $range(f^i) \subseteq \{0, 1\}$ for all *i*.

Some notes on this result:

- Also holds for computing partial functions and relations.
- Implies various corollaries, e.g. a direct sum theorem for decision tree complexity (a special case of a result of [Jain, Klauck and Santha '10]) and optimal bounds for iteratively defined functions.
- The quantum equivalent of this result was proven by [Høyer, Lee and Špalek '07] and [Reichardt '09].

Summary

We can learn...

- ... *n*-bit strings with $O(\sqrt{n})$ wildcard queries;
- ... degree *d n*-variate multilinear polynomials with $O(n^{d-1})$ queries;
- ... *n*-qubit stabilizer states with O(n) copies.

Summary

We can learn...

- ... *n*-bit strings with $O(\sqrt{n})$ wildcard queries;
- ... degree *d n*-variate multilinear polynomials with $O(n^{d-1})$ queries;
- ... *n*-qubit stabilizer states with O(n) copies.

Open problems:

- Determine the quantum query complexity of CGT.
- Other applications of SWW! A possible example: testing juntas.
- What about testing stabilizer states?

Thanks!

Some further reading:

- The algorithm for search with wildcards: **arXiv:1210.1148** (joint work with Andris Ambainis)
- The algorithm for learning multilinear polynomials: arXiv:1105.3310
- The algorithm for learning stabilizer states: arXiv:13??.???? (joint work with Scott Aaronson, David Chen, Daniel Gottesman and Vincent Liew)
- The composition theorem for decision tree complexity: arXiv:1302.4207

We finally need to prove we can distinguish the $|\psi_x^k\rangle$ states. We use the pretty good measurement (PGM).

We finally need to prove we can distinguish the $|\psi_x^k\rangle$ states. We use the pretty good measurement (PGM).

Lemma

The probability that the PGM outputs *y* on input $|\psi_x^k\rangle$ is precisely $(\sqrt{G})_{xy'}^2$ where

$$G_{xy} = \langle \psi_x^k | \psi_y^k \rangle = \frac{1}{\binom{n}{k}} \sum_{S \subseteq [n], |S|=k} [x_S = y_S] = \frac{\binom{n-d(x,y)}{k}}{\binom{n}{k}}.$$

We finally need to prove we can distinguish the $|\psi_x^k\rangle$ states. We use the pretty good measurement (PGM).

Lemma

The probability that the PGM outputs *y* on input $|\psi_x^k\rangle$ is precisely $(\sqrt{G})_{xy}^2$, where

$$G_{xy} = \langle \psi_x^k | \psi_y^k \rangle = \frac{1}{\binom{n}{k}} \sum_{S \subseteq [n], |S|=k} [x_S = y_S] = \frac{\binom{n-d(x,y)}{k}}{\binom{n}{k}}.$$

• We want to bound $D_k := \sum_{y \in \{0,1\}^n} d(x, y) (\sqrt{G}_{xy})^2$.

We finally need to prove we can distinguish the $|\psi_x^k\rangle$ states. We use the pretty good measurement (PGM).

Lemma

The probability that the PGM outputs *y* on input $|\psi_x^k\rangle$ is precisely $(\sqrt{G})_{xy}^2$, where

$$G_{xy} = \langle \psi_x^k | \psi_y^k \rangle = \frac{1}{\binom{n}{k}} \sum_{S \subseteq [n], |S|=k} [x_S = y_S] = \frac{\binom{n-d(x,y)}{k}}{\binom{n}{k}}.$$

- We want to bound $D_k := \sum_{y \in \{0,1\}^n} d(x, y) (\sqrt{G}_{xy})^2$.
- *G_{xy}* depends only on *x* ⊕ *y*, so *G* is diagonalised by the Fourier transform over Zⁿ₂ and D_k does not depend on *x*.

We finally need to prove we can distinguish the $|\psi_x^k\rangle$ states. We use the pretty good measurement (PGM).

Lemma

The probability that the PGM outputs *y* on input $|\psi_x^k\rangle$ is precisely $(\sqrt{G})_{xy}^2$, where

$$G_{xy} = \langle \Psi_x^k | \Psi_y^k \rangle = \frac{1}{\binom{n}{k}} \sum_{S \subseteq [n], |S|=k} [x_S = y_S] = \frac{\binom{n-d(x,y)}{k}}{\binom{n}{k}}.$$

- We want to bound $D_k := \sum_{y \in \{0,1\}^n} d(x, y) (\sqrt{G}_{xy})^2$.
- *G_{xy}* depends only on *x* ⊕ *y*, so *G* is diagonalised by the Fourier transform over Zⁿ₂ and D_k does not depend on *x*.
- *D_k* can be upper bounded using Fourier duality and some combinatorics.