Three quantum learning algorithms

Ashley Montanaro

Talk based on joint work with Andris Ambainis and ongoing joint work with Scott Aaronson, David Chen, Daniel Gottesman and Vincent Liew.

11 March 2013
What is learning?

In this talk

Learning a set $S \equiv$ identifying an arbitrary, unknown object picked from S.
A little learning is a dangerous thing;
drink deep, or taste not the Pierian spring:
there shallow draughts intoxicate the brain,
and drinking largely sobers us again.

— Alexander Pope
This talk

“A little learning is a dangerous thing; drink deep, or taste not the Pierian spring: there shallow draughts intoxicate the brain, and drinking largely sobers us again.”

— Alexander Pope

On this principle, I’ll talk about three optimal quantum algorithms for learning an unknown...

- …bit-string, given access to “wildcard” queries;
- …low-degree multilinear polynomial;
- …stabilizer state.

Bonus mini-result: A composition theorem for classical decision tree complexity.
Search with wildcards

- We are given access to an unknown n-bit string x.

Example: Imagine the hidden string is $x = 01101$. Then querying...

- $0^*1^*1^*$ returns 1;
- $^*1^*^*$ returns 0.
Search with wildcards

- We are given access to an unknown n-bit string x.

- Our task is to determine x using the minimum expected number of queries.
Search with wildcards

- We are given access to an unknown n-bit string x.
- Our task is to determine x using the minimum expected number of queries.
- The different possible queries are given by strings $s \in \{0, 1, *\}^n$. A query $q_x(s)$ returns 1 if $x_i = s_i$ for all i such that $s_i \neq *$, and returns 0 otherwise.
Search with wildcards

- We are given access to an unknown \(n \)-bit string \(x \).
- Our task is to determine \(x \) using the minimum expected number of queries.
- The different possible queries are given by strings \(s \in \{0, 1, \ast\}^n \). A query \(q_x(s) \) returns 1 if \(x_i = s_i \) for all \(i \) such that \(s_i \neq \ast \), and returns 0 otherwise.
- A generalisation of the simple “standard” model where each query is to an individual bit of \(x \).
Search with wildcards

- We are given access to an unknown n-bit string x.
- Our task is to determine x using the minimum expected number of queries.
- The different possible queries are given by strings $s \in \{0, 1, *\}^n$. A query $q_x(s)$ returns 1 if $x_i = s_i$ for all i such that $s_i \neq *$, and returns 0 otherwise.
- A generalisation of the simple “standard” model where each query is to an individual bit of x.

Example
Imagine the hidden string is $x = 01101$. Then querying...
- $0 \, * \, 1 \, * \, 1$ returns 1;
- $* \, 1 \, * \, 1 \, *$ returns 0.
Search with wildcards

We can also think of a query as specifying a subset S of the bits, and a “guess” y_S.

Classically, we need n queries to determine x (each query gives one bit of information).
Search with wildcards

- We can also think of a query as specifying a subset S of the bits, and a “guess” y_S.

- Classically, we need n queries to determine x (each query gives one bit of information).

- In the quantum case, we imagine we have access to an oracle which maps

$$|s\rangle|z\rangle \mapsto |s\rangle|z \oplus q_x(s)\rangle.$$
Search with wildcards

- We can also think of a query as specifying a subset \(S \) of the bits, and a “guess” \(y_S \).
- Classically, we need \(n \) queries to determine \(x \) (each query gives one bit of information).
- In the quantum case, we imagine we have access to an oracle which maps

\[
|s\rangle|z\rangle \mapsto |s\rangle|z \oplus q_x(s)\rangle.
\]

Theorem

Search with wildcards can be solved with \(O(\sqrt{n}) \) quantum queries on average.
Search with wildcards

- We can also think of a query as specifying a subset S of the bits, and a “guess” y_S.
- Classically, we need n queries to determine x (each query gives one bit of information).
- In the quantum case, we imagine we have access to an oracle which maps

$$|s⟩|z⟩ \mapsto |s⟩|z \oplus q_x(s)⟩.$$

Theorem

Search with wildcards can be solved with $O(\sqrt{n})$ quantum queries on average.

Contrast: In the standard model, there is a quantum speed-up by about a factor of 2 [van Dam ’98], and this is optimal.
Solving SWW

The solution to SWW is based on this claim:

Measurement Lemma

Fix \(n \geq 1 \) and, for any \(0 \leq k \leq n \), set

\[
|\psi^k_x\rangle := \frac{1}{\binom{n}{k}^{1/2}} \sum_{S \subseteq [n], |S|=k} |S\rangle|x_S\rangle
\]

where \(|x_S\rangle := \bigotimes_{i \in S} |x_i\rangle\). Then, for any \(k = n - O(\sqrt{n}) \), there is a quantum measurement (POVM) which, on input \(|\psi^k_x\rangle\), outputs \(\tilde{x}\) such that the expected Hamming distance \(d(x, \tilde{x})\) is \(O(1)\).
Solving SWW

The solution to SWW is based on this claim:

Measurement Lemma

Fix \(n \geq 1 \) and, for any \(0 \leq k \leq n \), set

\[
|\psi^k_x\rangle := \frac{1}{\binom{n}{k}^{1/2}} \sum_{S \subseteq [n], |S| = k} |S\rangle|x_S\rangle,
\]

where \(|x_S\rangle := \bigotimes_{i \in S} |x_i\rangle \). Then, for any \(k = n - O(\sqrt{n}) \), there is a quantum measurement (POVM) which, on input \(|\psi^k_x\rangle \), outputs \(\tilde{x} \) such that the expected Hamming distance \(d(x, \tilde{x}) \) is \(O(1) \).

This is surprising because the equivalent classical statement is not true!
Solving SWW

The solution to SWW is based on this claim:

Measurement Lemma

Fix $n \geq 1$ and, for any $0 \leq k \leq n$, set

$$|\psi^k_x\rangle := \frac{1}{\binom{n}{k}^{1/2}} \sum_{|S| = k, S \subseteq [n]} |S\rangle |x_S\rangle,$$

where $|x_S\rangle := \bigotimes_{i \in S} |x_i\rangle$. Then, for any $k = n - O(\sqrt{n})$, there is a quantum measurement (POVM) which, on input $|\psi^k_x\rangle$, outputs \tilde{x} such that the expected Hamming distance $d(x, \tilde{x})$ is $O(1)$.

This is surprising because the equivalent classical statement is not true!

Why does this let us solve SWW?
Our algorithm for SWW repeatedly uses the lemma to learn $O(\sqrt{n})$ bits of x at a time in superposition.
The measurement lemma \Rightarrow solving SWW

- Our algorithm for SWW repeatedly uses the lemma to learn $O(\sqrt{n})$ bits of x at a time in superposition.

- Imagine we have $|\psi_k^x\rangle$. For $k' > k$, this can be mapped to

$$\sum_{S':S' \subseteq [n], |S'|=k'} |S'\rangle \left(\sum_{S:S \subseteq S', |S|=k} |S\rangle |x_S\rangle \right) = \sum_{S:S \subseteq [n], |S|=k'} |S\rangle |\psi_{x_S}^k\rangle,$$

so if we can map $|\psi_{x_S}^k\rangle \mapsto |x_S\rangle$, we've made $|\psi_{x}^{k'}\rangle$.
Our algorithm for SWW repeatedly uses the lemma to learn $O(\sqrt{n})$ bits of x at a time in superposition.

Imagine we have $|\psi_x^k\rangle$. For $k' > k$, this can be mapped to

$$
\sum_{S':S' \subseteq [n], |S'| = k'} |S'\rangle \left(\sum_{S:S \subseteq S', |S| = k} |S\rangle |x_S\rangle \right) = \sum_{S:S \subseteq [n], |S| = k'} |S\rangle |\psi_x^k\rangle,
$$

so if we can map $|\psi_x^k\rangle \mapsto |x_S\rangle$, we’ve made $|\psi_x^{k'}\rangle$.

By the lemma, we can do this when $k = k' - O(\sqrt{k'})$. . .
The measurement lemma \(\Rightarrow\) solving SWW

- Our algorithm for SWW repeatedly uses the lemma to learn \(O(\sqrt{n})\) bits of \(x\) at a time in superposition.

- Imagine we have \(|\psi_k^x\rangle\). For \(k' > k\), this can be mapped to

\[
\sum_{S': S' \subseteq [n], |S'| = k'} |S'\rangle \left(\sum_{S: S \subseteq S', |S| = k} |S\rangle |x_S\rangle \right) = \sum_{S: S \subseteq [n], |S| = k'} |S\rangle |\psi_{x_S}^k\rangle,
\]

so if we can map \(|\psi_{x_S}^k\rangle \mapsto |x_S\rangle\), we’ve made \(|\psi_{x}^{k'}\rangle\).

- By the lemma, we can do this when \(k = k' - O(\sqrt{k'})\)…

- …but after each measurement, an expected \(O(1)\) bits are incorrect.
The measurement lemma ⇒ solving SWW

- Our algorithm for SWW repeatedly uses the lemma to learn $O(\sqrt{n})$ bits of x at a time in superposition.

- Imagine we have $|\psi^k_x\rangle$. For $k' > k$, this can be mapped to

$$
\sum_{S': S' \subseteq [n], |S'| = k'} |S'\rangle \left(\sum_{S: S \subseteq S', |S| = k} |S\rangle |x_S\rangle \right) = \sum_{S: S \subseteq [n], |S| = k'} |S\rangle |\psi^k_{x_S}\rangle,
$$

so if we can map $|\psi^k_{x_S}\rangle \mapsto |x_S\rangle$, we’ve made $|\psi^{k'}_x\rangle$.

- By the lemma, we can do this when $k = k' - O(\sqrt{k'})$…

- …but after each measurement, an expected $O(1)$ bits are incorrect.

- How to fix these?
Combinatorial group testing (CGT)

Proposed by [Dorfman ’43] as a means of “weeding out all syphilitic men called up for induction”.

The abstract problem is:

We have a set of n items $x_1, \ldots, x_n \in \{0, 1\}$. Exactly $k \ll n$ items x_i are special and have $x_i = 1$. We are allowed to query any subset $S \subseteq [n] := \{1, \ldots, n\}$. A query returns 1 if any items in S are special. We want to output the identities of all of the special items using the minimal number of queries. In particular, we would like to minimise the dependence on n.
Combinatorial group testing (CGT)

Proposed by [Dorfman ’43] as a means of “weeding out all syphilitic men called up for induction”.

The abstract problem is:

- We have a set of n items $x_1, \ldots, x_n \in \{0, 1\}$.
Combinatorial group testing (CGT)

Proposed by [Dorfman ’43] as a means of “weeding out all syphilitic men called up for induction”.

The abstract problem is:

- We have a set of n items $x_1, \ldots, x_n \in \{0, 1\}$.
- Exactly $k \ll n$ items x_i are special and have $x_i = 1$.
Combinatorial group testing (CGT)

Proposed by [Dorfman ’43] as a means of “weeding out all syphilitic men called up for induction”.

The abstract problem is:

- We have a set of \(n \) items \(x_1, \ldots, x_n \in \{0, 1\} \).
- Exactly \(k \ll n \) items \(x_i \) are special and have \(x_i = 1 \).
- We are allowed to query any subset \(S \subseteq [n] := \{1, \ldots, n\} \). A query returns 1 if any items in \(S \) are special.
Combinatorial group testing (CGT)

Proposed by [Dorfman ’43] as a means of “weeding out all syphilitic men called up for induction”.

The abstract problem is:

- We have a set of n items $x_1, \ldots, x_n \in \{0, 1\}$.
- Exactly $k \ll n$ items x_i are special and have $x_i = 1$.
- We are allowed to query any subset $S \subseteq [n] := \{1, \ldots, n\}$. A query returns 1 if any items in S are special.
- We want to output the identities of all of the special items using the minimal number of queries.
Combinatorial group testing (CGT)

Proposed by [Dorfman ’43] as a means of “weeding out all syphilitic men called up for induction”.

The abstract problem is:

- We have a set of \(n \) items \(x_1, \ldots, x_n \in \{0, 1\} \).
- Exactly \(k \ll n \) items \(x_i \) are special and have \(x_i = 1 \).
- We are allowed to query any subset \(S \subseteq [n] := \{1, \ldots, n\} \). A query returns 1 if any items in \(S \) are special.
- We want to output the identities of all of the special items using the minimal number of queries.

In particular, we would like to minimise the dependence on \(n \).
Classical results

- The number of classical queries required to solve CGT is $\Theta(k \log(n/k))$.
 - Lower bound: information-theoretic argument.
 - Upper bound: (essentially) binary search.
Classical results

- The number of classical queries required to solve CGT is $\Theta(k \log(n/k))$.
 - Lower bound: information-theoretic argument.
 - Upper bound: (essentially) binary search.

- If we restrict to nonadaptive queries, the bound becomes essentially $\Theta(\min\{k^2 \log n, n\})$.

The number of classical queries required to solve CGT is $\Theta(k \log(n/k))$.

- Lower bound: information-theoretic argument.
- Upper bound: (essentially) binary search.

If we restrict to nonadaptive queries, the bound becomes essentially $\Theta(\min\{k^2 \log n, n\})$.

Many applications known: molecular biology, data streaming algorithms, compressed sensing, pattern matching in strings, ...
Classical results

- The number of classical queries required to solve CGT is $\Theta(k \log(n/k))$.
 - Lower bound: information-theoretic argument.
 - Upper bound: (essentially) binary search.

- If we restrict to nonadaptive queries, the bound becomes essentially $\Theta(\min\{k^2 \log n, n\})$.

- Many applications known: molecular biology, data streaming algorithms, compressed sensing, pattern matching in strings, …

The $k = 1$ case

If $k = 1$, CGT can be solved exactly using one quantum query.
Quantum algorithms for CGT

The $k = 1$ case
If $k = 1$, CGT can be solved exactly using one quantum query.

Basic idea:

- To learn x, suffices to be able to compute the function $x \cdot s = \bigoplus_i x_i s_i$ for arbitrary $s \in \{0, 1\}^n$ (as with e.g. the quantum oracle interrogation algorithm of [van Dam ’98]).
Quantum algorithms for CGT

The $k = 1$ case
If $k = 1$, CGT can be solved exactly using one quantum query.

Basic idea:

- To learn x, suffices to be able to compute the function $x \cdot s = \bigoplus_i x_is_i$ for arbitrary $s \in \{0, 1\}^n$ (as with e.g. the quantum oracle interrogation algorithm of [van Dam '98]).

- In the CGT problem, we have access to an oracle which computes $f(s) = \bigvee_i x_is_i$ for arbitrary $s \in \{0, 1\}^n$. But if $|x| \leq 1$, then for any s, $\bigvee_i x_is_i = x \cdot s$.
Generalising this idea to arbitrary k

Theorem

CGT can be solved using $O(k)$ quantum queries on average.
Generalising this idea to arbitrary \(k \)

Theorem

CGT can be solved using \(O(k) \) quantum queries on average.

- Construct \(S \subseteq [n] \) by including each \(i \in [n] \) with prob. \(1/k \).
Generalising this idea to arbitrary k

Theorem

CGT can be solved using $O(k)$ quantum queries on average.

- Construct $S \subseteq [n]$ by including each $i \in [n]$ with prob. $1/k$.
- Run the $k = 1$ algorithm on the subset of bits in S.

Generalising this idea to arbitrary k

Theorem
CGT can be solved using $O(k)$ quantum queries on average.

- Construct $S \subseteq [n]$ by including each $i \in [n]$ with prob. $1/k$.
- Run the $k = 1$ algorithm on the subset of bits in S.
- If S contains exactly one 1 bit at position i, which will occur with probability at least $(1 - 1/k)^{k-1} \geq 1/e$, we are guaranteed to learn i.

We can check whether the index \tilde{i} we received really is a 1 by making one more query to index \tilde{i}. Following each successful query, we reduce k by 1 and exclude the bit that we just learned from future queries. In order to learn x completely, the expected overall number of queries used is $O(k)$.
Generalising this idea to arbitrary k

Theorem

CGT can be solved using $O(k)$ quantum queries on average.

- Construct $S \subseteq [n]$ by including each $i \in [n]$ with prob. $1/k$.
- Run the $k = 1$ algorithm on the subset of bits in S.
- If S contains exactly one 1 bit at position i, which will occur with probability at least $(1 - 1/k)^{k-1} \geq 1/e$, we are guaranteed to learn i.
- We can check whether the index \tilde{i} we received really is a 1 by making one more query to index \tilde{i}.
Generalising this idea to arbitrary \(k \)

Theorem

CGT can be solved using \(O(k) \) quantum queries on average.

- Construct \(S \subseteq [n] \) by including each \(i \in [n] \) with prob. \(1/k \).
- Run the \(k = 1 \) algorithm on the subset of bits in \(S \).
- If \(S \) contains exactly one 1 bit at position \(i \), which will occur with probability at least \((1 - 1/k)^{k-1} \geq 1/e \), we are guaranteed to learn \(i \).
- We can check whether the index \(\tilde{i} \) we received really is a 1 by making one more query to index \(\tilde{i} \).
- Following each successful query, we reduce \(k \) by 1 and exclude the bit that we just learned from future queries.
Generalising this idea to arbitrary k

Theorem
CGT can be solved using $O(k)$ quantum queries on average.

- Construct $S \subseteq [n]$ by including each $i \in [n]$ with prob. $1/k$.
- Run the $k = 1$ algorithm on the subset of bits in S.
- If S contains exactly one 1 bit at position i, which will occur with probability at least $(1 - 1/k)^{k-1} \geq 1/e$, we are guaranteed to learn i.
- We can check whether the index \tilde{i} we received really is a 1 by making one more query to index \tilde{i}.
- Following each successful query, we reduce k by 1 and exclude the bit that we just learned from future queries.
- In order to learn x completely, the expected overall number of queries used is $O(k)$.
When we measure $|\psi^k_x\rangle$, we get an outcome \tilde{x} such that $d(\tilde{x}, x) = O(1)$.
When we measure $|\psi^k_x\rangle$, we get an outcome \tilde{x} such that $d(\tilde{x}, x) = O(1)$.

We want to determine x, which is equivalent to determining $\tilde{x} \oplus x$, a string of Hamming weight $O(1)$.
When we measure $|\psi^k_x\rangle$, we get an outcome \tilde{x} such that $d(\tilde{x}, x) = O(1)$.

We want to determine x, which is equivalent to determining $\tilde{x} \oplus x$, a string of Hamming weight $O(1)$.

A wildcard query corresponding to $S \subseteq [n]$ and the string \tilde{x}_S returns 1 iff all bits of \tilde{x}_S are correct. Negating the output gives a query that behaves the same as a CGT query.
When we measure $|\psi_x^k\rangle$, we get an outcome \tilde{x} such that $d(\tilde{x}, x) = O(1)$.

We want to determine x, which is equivalent to determining $\tilde{x} \oplus x$, a string of Hamming weight $O(1)$.

A wildcard query corresponding to $S \subseteq [n]$ and the string \tilde{x}_S returns 1 iff all bits of \tilde{x}_S are correct. Negating the output gives a query that behaves the same as a CGT query.

So we can use the algorithm for CGT to find, and correct, all incorrect bits using $O(1)$ queries.
Summary

- Using an efficient algorithm for CGT as a subroutine, we can solve search with wildcards using $O(\sqrt{n})$ queries.

- This is a square-root speed-up which (apparently) does not come from amplitude amplification or quantum walks.

- **Open problem:** Determine the quantum query complexity of CGT. We have an upper bound of $O(k)$ and a lower bound of $\Omega(\sqrt{k})$.
Learning classical oracles

Consider the following basic problem.

We are given access to a function $f : \mathbb{F}_q^n \rightarrow \mathbb{F}_q$. We would like to identify f.

* If f is arbitrary, we need q^n classical queries.
* If f is picked from a known set F, we need at least $\log_2 |F|$ queries.

We say that F can be learned using t queries if any function $f \in F$ can be identified with t uses of f (perhaps allowing some probability of error).
Learning classical oracles

Consider the following basic problem.

We are given access to a function \(f : \mathbb{F}_q^n \rightarrow \mathbb{F}_q \). We would like to identify \(f \).

If \(f \) is arbitrary, we need \(q^n \) classical queries.
Learning classical oracles

Consider the following basic problem.

We are given access to a function $f : \mathbb{F}_q^n \rightarrow \mathbb{F}_q$. We would like to identify f.

- If f is arbitrary, we need q^n classical queries.
- If f is picked from a known set \mathcal{F}, we need at least $\log_q |\mathcal{F}|$ queries.
Learning classical oracles

Consider the following basic problem.

We are given access to a function $f : \mathbb{F}_q^n \rightarrow \mathbb{F}_q$. We would like to identify f.

- If f is arbitrary, we need q^n classical queries.
- If f is picked from a known set \mathcal{F}, we need at least $\log_q |\mathcal{F}|$ queries.
- We say that \mathcal{F} can be learned using t queries if any function $f \in \mathcal{F}$ can be identified with t uses of f (perhaps allowing some probability of error).
Learning classical oracles on a quantum computer

On a quantum computer, we have the ability to query f in superposition, i.e. to perform the map

$$|x⟩|z⟩ \mapsto |x⟩|z + f(x)⟩.$$
Learning classical oracles on a quantum computer

- On a quantum computer, we have the ability to query f in superposition, i.e. to perform the map

$$|x⟩|z⟩ \mapsto |x⟩|z + f(x)⟩.$$

- One of the oldest results in quantum computing: the Bernstein-Vazirani algorithm [Bernstein and Vazirani ’97].

Theorem (Bernstein and Vazirani)

The class of linear functions $f : \mathbb{F}_2^n \to \mathbb{F}_2$ can be learned with certainty using 1 quantum query.

f is linear if $f(x + y) = f(x) + f(y)$; equivalently, $f(x) = \ell \cdot x$ for some $\ell \in \mathbb{F}_2^n$.
Learning multilinear polynomials

$f : \mathbb{F}_q^n \rightarrow \mathbb{F}_q$ is a degree d multilinear polynomial:

$$f(x) = \sum_{S \subseteq [n], |S| \leq d} \alpha_S \prod_{i \in S} x_i$$

for some coefficients $\alpha_S \in \mathbb{F}_q$, where $[n] := \{1, \ldots, n\}$.

- Note that for $S = \emptyset$ we define $\prod_{i \in S} x_i = 1$.
Learning multilinear polynomials

$f : \mathbb{F}_{q}^{n} \to \mathbb{F}_{q}$ is a degree d multilinear polynomial:

\[
f(x) = \sum_{S \subseteq [n], |S| \leq d} \alpha_S \prod_{i \in S} x_i
\]

for some coefficients $\alpha_S \in \mathbb{F}_{q}$, where $[n] := \{1, \ldots, n\}$.

- Note that for $S = \emptyset$ we define $\prod_{i \in S} x_i = 1$.
- For example, any multilinear polynomial of degree 3 can be written as

\[
f(x) = \alpha_{\emptyset} + \sum_{i} \alpha_{\{i\}} x_i + \sum_{i < j} \alpha_{\{i,j\}} x_i x_j + \sum_{i < j < k} \alpha_{\{i,j,k\}} x_i x_j x_k.
\]
Learning multilinear polynomials

$f : \mathbb{F}_q^n \rightarrow \mathbb{F}_q$ is a degree d multilinear polynomial:

$$f(x) = \sum_{S \subseteq [n], |S| \leq d} \alpha_S \prod_{i \in S} x_i$$

for some coefficients $\alpha_S \in \mathbb{F}_q$, where $[n] := \{1, \ldots, n\}$.

- Note that for $S = \emptyset$ we define $\prod_{i \in S} x_i = 1$.
- For example, any multilinear polynomial of degree 3 can be written as

$$f(x) = \alpha_\emptyset + \sum_i \alpha_{\{i\}} x_i + \sum_{i < j} \alpha_{\{i,j\}} x_i x_j + \sum_{i < j < k} \alpha_{\{i,j,k\}} x_i x_j x_k.$$

- In the important special case $q = 2$ (boolean functions), every polynomial is multilinear.
Learning multilinear polynomials

\[f : \mathbb{F}_q^n \to \mathbb{F}_q \text{ is a degree } d \text{ multilinear polynomial:} \]

\[f(x) = \sum_{S \subseteq [n], |S| \leq d} \alpha_S \prod_{i \in S} x_i \]

for some coefficients \(\alpha_S \in \mathbb{F}_q \), where \([n] := \{1, \ldots, n\}\).

- Note that for \(S = \emptyset \) we define \(\prod_{i \in S} x_i = 1 \).
- For example, any multilinear polynomial of degree 3 can be written as

\[f(x) = \alpha_{\emptyset} + \sum_i \alpha_{\{i\}} x_i + \sum_{i<j} \alpha_{\{i,j\}} x_i x_j + \sum_{i<j<k} \alpha_{\{i,j,k\}} x_i x_j x_k. \]

- In the important special case \(q = 2 \) (boolean functions), every polynomial is multilinear.
- The set of degree \(d \) polynomials over \(\mathbb{F}_2 \) is known as the binary Reed-Muller code of order \(d \).
Learning multilinear polynomials

Fact
The class of degree d multilinear polynomials in n variables over \mathbb{F}_q can be learned exactly using $O(n^d)$ classical queries, and this is optimal.
Learning multilinear polynomials

Fact
The class of degree d multilinear polynomials in n variables over \mathbb{F}_q can be learned exactly using $O(n^d)$ classical queries, and this is optimal.

- **Upper bound:** It suffices to query $f(x)$ for all strings $x \in \mathbb{F}_q^n$ that contain only 0 and 1, and such that $|x| \leq d$.

- **Lower bound:** there are $q^{\Theta(n^d)}$ distinct multilinear degree d polynomials of n variables over \mathbb{F}_q; each classical query to f only provides $\log_2 q$ bits of information.
The class of degree d multilinear polynomials in n variables over \mathbb{F}_q can be learned exactly using $O(n^{d-1})$ quantum queries, and this is optimal.

Notes:
- The lower bound follows from Holevo's theorem.
- The Bernstein-Vazirani algorithm is the case $q=2, d=1$.
- Rötteler previously gave a bounded-error quantum algorithm for the case $q=2, d=2$ [Rötteler '09].
- A quantum algorithm for estimating a quadratic form over the reals had previously been given by Jordan [Jordan '08].
Learning multilinear polynomials

The class of degree d multilinear polynomials in n variables over \mathbb{F}_q can be learned exactly using $O(n^{d-1})$ quantum queries, and this is optimal.

Notes:

- The lower bound follows from Holevo’s theorem.
- The Bernstein-Vazirani algorithm is the case $q = 2, d = 1$.
- Rötteler previously gave a bounded-error quantum algorithm for the case $q = 2, d = 2$ [Rötteler ’09].
- A quantum algorithm for estimating a quadratic form over the reals had previously been given by Jordan [Jordan ’08].
The algorithm

The algorithm will be based on efficient learning of linear functions, via the following lemma [de Beaudrap et al ’02, van Dam et al ’02].

Lemma 1

Let $f : \mathbb{F}_q^n \rightarrow \mathbb{F}_q$ be linear, and let $g : \mathbb{F}_q^n \rightarrow \mathbb{F}_q$ be the function $g(x) = f(x) + \beta$ for some constant $\beta \in \mathbb{F}_q$. Then f can be determined exactly using one quantum query to g.
The algorithm will be based on efficient learning of linear functions, via the following lemma [de Beaudrap et al ’02, van Dam et al ’02].

Lemma 1

Let $f : \mathbb{F}^n_q \rightarrow \mathbb{F}_q$ be linear, and let $g : \mathbb{F}^n_q \rightarrow \mathbb{F}_q$ be the function $g(x) = f(x) + \beta$ for some constant $\beta \in \mathbb{F}_q$. Then f can be determined exactly using one quantum query to g.

Proof: query f in superposition and use the QFT over \mathbb{F}^n_q.

The algorithm

For $S \subseteq [n]$, $|S| = k$, define

$$f_S(x) = \sum_{\beta_1, \ldots, \beta_k \in \{0,1\}} (-1)^{k-\sum_{i=1}^{k} \beta_i} f \left(x + \sum_{j=1}^{k} \beta_j e_{S_j} \right).$$

Here e_i is the i'th element in the standard basis for \mathbb{F}_q^n; the inner sum is over \mathbb{F}_q^n and the outer sum is over \mathbb{F}_q.
The algorithm

For $S \subseteq [n]$, $|S| = k$, define

$$f_S(x) = \sum_{\beta_1, \ldots, \beta_k \in \{0,1\}} (-1)^{k-\sum_{i=1}^{k} \beta_i} f \left(x + \sum_{j=1}^{k} \beta_j e_{S_j} \right).$$

Here e_i is the i’th element in the standard basis for \mathbb{F}_q^n; the inner sum is over \mathbb{F}_q^n and the outer sum is over \mathbb{F}_q.

- For example, if $S = \{1, 2\}$:

$$f_S(x) = f(x) - f(x + e_1) - f(x + e_2) + f(x + e_1 + e_2).$$
The algorithm

For $S \subseteq [n]$, $|S| = k$, define

$$f_S(x) = \sum_{\beta_1, \ldots, \beta_k \in \{0,1\}} (-1)^{k-\sum_{i=1}^{k} \beta_i} f \left(x + \sum_{j=1}^{k} \beta_j e_{S_j} \right).$$

Here e_i is the i'th element in the standard basis for \mathbb{F}_q^n; the inner sum is over \mathbb{F}_q^n and the outer sum is over \mathbb{F}_q.

- For example, if $S = \{1, 2\}$:

$$f_S(x) = f(x) - f(x + e_1) - f(x + e_2) + f(x + e_1 + e_2).$$

- A query to f_S can be simulated using 2^k queries to f.
The algorithm

For $S \subseteq [n]$, $|S| = k$, define

$$f_S(x) = \sum_{\beta_1, \ldots, \beta_k \in \{0, 1\}} (-1)^{k - \sum_{i=1}^k \beta_i} f \left(x + \sum_{j=1}^k \beta_j e_{S_j} \right).$$

Here e_i is the i'th element in the standard basis for \mathbb{F}_q^n; the inner sum is over \mathbb{F}_q^n and the outer sum is over \mathbb{F}_q.

- For example, if $S = \{1, 2\}$:

 $$f_S(x) = f(x) - f(x + e_1) - f(x + e_2) + f(x + e_1 + e_2).$$

- A query to f_S can be simulated using 2^k queries to f.

- Define the discrete derivative of f in direction $i \in [n]$ as

 $$(\Delta_i f)(x) := f(x + e_i) - f(x).$$

- Then $f_S(x) = (\Delta_{S_1} \Delta_{S_2} \ldots \Delta_{S_k} f)(x)$.
The algorithm

We will be interested in querying \(f_S \) for sets \(S \) of size \(d - 1 \). In this case, we have the following characterisation for multilinear polynomials \(f \).

Lemma 2

Let \(f : \mathbb{F}_q^n \rightarrow \mathbb{F}_q \) be a multilinear polynomial of degree \(d \) with expansion

\[
f(x) = \sum_{T \subseteq [n], |T| \leq d} \alpha_T \prod_{i \in T} x_i.
\]

Then, for any \(S \) such that \(|S| = d - 1 \),

\[
f_S(x) = \alpha_S + \sum_{k \notin S} \alpha_{S \cup \{k\}} x_k.
\]
The algorithm

We will be interested in querying f_S for sets S of size $d - 1$. In this case, we have the following characterisation for multilinear polynomials f.

Lemma 2

Let $f : \mathbb{F}_q^n \to \mathbb{F}_q$ be a multilinear polynomial of degree d with expansion

$$f(x) = \sum_{T \subseteq [n], |T| \leq d} \alpha_T \prod_{i \in T} x_i.$$

Then, for any S such that $|S| = d - 1$,

$$f_S(x) = \alpha_S + \sum_{k \notin S} \alpha_{S \cup \{k\}} x_k.$$

Proof: follows easily from expressing f in terms of discrete derivatives.
Learning all the degree \(d\) terms

The algorithm

\[
\textbf{foreach } S \subseteq [n] \text{ such that } |S| = d - 1 \text{ do}
\]
\[
| \quad \text{Use one query to } f_S \text{ to learn } \alpha_{S \cup \{k\}}, \text{ for all } k \not\in S; \quad |
\]
end

Output the function \(f_d(x) = \sum_{S \subseteq [n], |S| = d} \alpha_S \prod_{i \in S} x_i;\)

Proof of correctness:
By Lemma 2, for any \(S\) such that \(|S| = d - 1\), knowledge of the degree 1 component of \(f_S\) is sufficient to determine \(\alpha_{S \cup \{k\}}\), for all \(k \not\in S\).

So knowing the degree 1 part of \(f_S\) for all \(S \subseteq [n]\) such that \(|S| = d - 1\) is sufficient to completely determine all degree \(d\) coefficients of \(f\).
Learning all the degree d terms

The algorithm

```latex
\textbf{foreach} \ S \subseteq [n] \text{ such that } |S| = d - 1 \ \textbf{do}
\begin{itemize}
  \item Use one query to $f_S$ to learn $\alpha_{S \cup \{k\}}$, for all $k \not\in S$;
\end{itemize}
\textbf{end}

Output the function $f_d(x) = \sum_{S \subseteq [n], |S| = d} \alpha_S \prod_{i \in S} x_i$;
```

Proof of correctness:

- By Lemma 2, for any S such that $|S| = d - 1$, knowledge of the degree 1 component of f_S is sufficient to determine $\alpha_{S \cup \{k\}}$ for all $k \not\in S$.

- So knowing the degree 1 part of f_S for all $S \subseteq [n]$ such that $|S| = d - 1$ is sufficient to completely determine all degree d coefficients of f.
Learning all the degree d terms

The algorithm

foreach $S \subseteq [n]$ such that $|S| = d - 1$ do

| Use one query to f_S to learn $\alpha_{S \cup \{k\}}$, for all $k \notin S$;
end

Output the function $f_d(x) = \sum_{S \subseteq [n], |S| = d} \alpha_S \prod_{i \in S} x_i$;

Proof of correctness:

- By Lemma 1, for any S with $|S| = d - 1$, the degree 1 component of f_S can be determined with one quantum query to f_S.
Learning all the degree d terms

The algorithm

\begin{verbatim}
foreach $S \subseteq [n]$ such that $|S| = d - 1$ do
 Use one query to f_S to learn $\alpha_{S \cup \{k\}}$, for all $k \not\in S$;
end
Output the function $f_d(x) = \sum_{S \subseteq [n], |S| = d} \alpha_S \prod_{i \in S} x_i$;
\end{verbatim}

Proof of correctness:

- By Lemma 1, for any S with $|S| = d - 1$, the degree 1 component of f_S can be determined with one quantum query to f_S.

- So the algorithm completely determines the degree d component of f using $\binom{n}{d-1}$ queries to f_S, each of which uses 2^{d-1} queries to f.
Once the degree d component of f has been learned, f can be reduced to a degree $d - 1$ polynomial by crossing out the degree d part whenever the oracle for f is called.
Once the degree d component of f has been learned, f can be reduced to a degree $d - 1$ polynomial by crossing out the degree d part whenever the oracle for f is called.

Whenever the oracle is called on x, we subtract $f_d(x)$ from the result (where f_d is the degree d part of f), at no extra query cost.
Finishing up

- Once the degree d component of f has been learned, f can be reduced to a degree $d - 1$ polynomial by crossing out the degree d part whenever the oracle for f is called.

- Whenever the oracle is called on x, we subtract $f_d(x)$ from the result (where f_d is the degree d part of f), at no extra query cost.

- Inductively, f can be determined completely using

$$2^{d-1} \binom{n}{d-1} + 2^{d-2} \binom{n}{d-2} + \cdots + 2n + 1 + 1$$

queries; the last query is to determine the constant term α_{\emptyset}, which can be achieved by classically querying $f(0^n)$.
Finishing up

- Once the degree d component of f has been learned, f can be reduced to a degree $d - 1$ polynomial by crossing out the degree d part whenever the oracle for f is called.

- Whenever the oracle is called on x, we subtract $f_d(x)$ from the result (where f_d is the degree d part of f), at no extra query cost.

- Inductively, f can be determined completely using

\[
2^{d-1} \binom{n}{d-1} + 2^{d-2} \binom{n}{d-2} + \cdots + 2n + 1 + 1
\]

queries; the last query is to determine the constant term α_\emptyset, which can be achieved by classically querying $f(0^n)$.

- The number of queries used is therefore $O(n^{d-1})$ for constant d.
Learning quantum states

Consider the basic task of **quantum state estimation**.

Given the ability to produce copies of an unknown *n*-qubit quantum state $|\psi\rangle$, we would like to estimate $|\psi\rangle$.

- Standard quantum state tomography uses $2^{\Theta(n)}$ copies of $|\psi\rangle$ to achieve constant fidelity.

Can we do better?
Learning quantum states

Consider the basic task of **quantum state estimation**.

Given the ability to produce copies of an unknown \(n\)-qubit quantum state \(|\psi\rangle\), we would like to **estimate** \(|\psi\rangle\).

Standard quantum state tomography uses \(2^{\Theta(n)}\) copies of \(|\psi\rangle\) to achieve constant fidelity.
Given the ability to produce copies of an unknown n-qubit quantum state $|\psi\rangle$, we would like to estimate $|\psi\rangle$.

Standard quantum state tomography uses $2^{\Theta(n)}$ copies of $|\psi\rangle$ to achieve constant fidelity.

Can we do better?
Learning quantum states

Consider the basic task of quantum state estimation.

To achieve constant fidelity between our guess and $|\psi\rangle$, we need $2^{\Omega(n)}$ copies of $|\psi\rangle$.

To achieve constant fidelity between our guess and $|\psi\rangle$, we need $2^{\Omega(n)}$ copies of $|\psi\rangle$.
Learning quantum states

Consider the basic task of quantum state estimation.

To achieve constant fidelity between our guess and $|\psi\rangle$, we need $2^{\Omega(n)}$ copies of $|\psi\rangle$.

In order to determine $|\psi\rangle$ efficiently (using $\text{poly}(n)$ copies) we must restrict to classes of states which have efficient descriptions, or change the problem.
Learning quantum states

Some examples where this has been done:

- [Aaronson ’06] introduces “pretty good tomography”: relax to attempting to predict the outcomes of “most” measurements on the state.

Learning stabilizer states

Today I’ll talk about a learning algorithm for another important class of quantum states with efficient descriptions: stabilizer states.
Learning stabilizer states

Today I’ll talk about a learning algorithm for another important class of quantum states with efficient descriptions: stabilizer states.

- $|\psi\rangle$ is a stabilizer state of n qubits if there exists a subgroup G of 2^n pairwise commuting Pauli matrices (with ± 1 phases) such that $M|\psi\rangle = |\psi\rangle$ for all $M \in G$.

- Examples include GHZ states, cluster states, states occurring in quantum error-correcting codes, …
Learning stabilizer states

Today I’ll talk about a learning algorithm for another important class of quantum states with efficient descriptions: stabilizer states.

- $|\psi\rangle$ is a stabilizer state of n qubits if there exists a subgroup G of 2^n pairwise commuting Pauli matrices (with ± 1 phases) such that $M|\psi\rangle = |\psi\rangle$ for all $M \in G$.

- Examples include GHZ states, cluster states, states occurring in quantum error-correcting codes, …

A stabilizer state of n qubits is completely specified by a generating set for its stabilizer (n Pauli matrices on n qubits). There are $2^{\Theta(n^2)}$ stabilizer states of n qubits.
Prior work on learning stabilizer states

[Aaronson and Gottesman ‘08] have previously given quantum algorithms for learning an unknown stabilizer state $|\psi\rangle$:

- An algorithm which uses $O(n)$ copies of $|\psi\rangle$ and runs in time $O(n^4)$;
- An algorithm which uses $O(n^2)$ copies of $|\psi\rangle$, runs in time $O(n^4)$ and uses only single-copy measurements.
Learning stabilizer states

Theorem
There is a quantum algorithm which learns an unknown stabilizer state $|\psi\rangle$ given access to $O(n)$ copies of $|\psi\rangle$, and runs in time $O(n^3)$ (or better).

Notes on this result:
By Holevo's theorem, this is optimal in terms of the scaling of the number of copies of $|\psi\rangle$ used. Any algorithm for learning stabilizer states requires $\Omega(n^2)$ time just to write the output. The algorithm makes measurements on two copies of $|\psi\rangle$ at a time.
Learning stabilizer states

Theorem

There is a quantum algorithm which learns an unknown stabilizer state $|\psi\rangle$ given access to $O(n)$ copies of $|\psi\rangle$, and runs in time $O(n^3)$ (or better).

Notes on this result:

- By **Holevo's theorem**, this is optimal in terms of the scaling of the number of copies of $|\psi\rangle$ used.

- Any algorithm for learning stabilizer states requires $\Omega(n^2)$ time just to write the output.

- The algorithm makes measurements on two copies of $|\psi\rangle$ at a time.
The algorithm

The algorithm is based on the following subroutine.

Bell sampling

1. Create two copies of $|\psi\rangle$.
2. Measure each pair of qubits of $|\psi\rangle^{\otimes 2}$ in the Bell basis.

\[
|\psi\rangle \quad 1 \quad 2 \quad 3 \quad \cdots \quad n
\]

\[
|\psi\rangle \quad 1 \quad 2 \quad 3 \quad \cdots \quad n
\]

Learning stabilizer states

For \(z, x \in \{0, 1\} \), write \(\sigma_{zx} := \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}^z \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}^x \).

For \(s \in \{0, 1\}^{2n} \), write
\[
\sigma_s := \sigma_{s_1s_2} \otimes \cdots \otimes \sigma_{s_{2n-1}s_{2n}}.
\]

Fact

Let \(|\psi\rangle \) be a state of \(n \) qubits. Performing Bell sampling on \(|\psi\rangle \otimes^2 \) returns outcome \(s \) with probability
\[
\frac{|\langle \psi| \sigma_s |\psi^*\rangle|^2}{2^n}.
\]
Bell sampling and stabilizer states

- Up to an overall phase every stabilizer state $|\psi\rangle$ can be written in the form

$$|\psi\rangle = \frac{1}{\sqrt{|A|}} \sum_{x \in A} i^{\ell(x)}(-1)^{q(x)}|x\rangle,$$

where A is an affine subspace of \mathbb{F}_2^n, and $\ell, q : \{0, 1\}^n \rightarrow \{0, 1\}$ are linear and quadratic (respectively) polynomials over \mathbb{F}_2 [Dehaene and Moor ’02].
Bell sampling and stabilizer states

- Up to an overall phase every stabilizer state $|\psi\rangle$ can be written in the form

 $|\psi\rangle = \frac{1}{\sqrt{|A|}} \sum_{x \in A} i^{\ell(x)}(-1)^{q(x)} |x\rangle$,

 where A is an affine subspace of \mathbb{F}_2^n, and
 $\ell, q : \{0, 1\}^n \rightarrow \{0, 1\}$ are linear and quadratic (respectively) polynomials over \mathbb{F}_2 [Dehaene and Moor '02].

- As ℓ is linear, $\ell(x) = s \cdot x$ for some $s \in \{0, 1\}^n$.
Bell sampling and stabilizer states

- Up to an overall phase every stabilizer state $|\psi\rangle$ can be written in the form

$$|\psi\rangle = \frac{1}{\sqrt{|A|}} \sum_{x \in A} i^{\ell(x)} (-1)^{q(x)} |x\rangle,$$

where A is an affine subspace of \mathbb{F}_2^n, and

$\ell, q : \{0, 1\}^n \rightarrow \{0, 1\}$ are linear and quadratic (respectively) polynomials over \mathbb{F}_2 [Dehaene and Moor '02].

- As ℓ is linear, $\ell(x) = s \cdot x$ for some $s \in \{0, 1\}^n$.

- So $(-1)^{\ell(x)} = \prod_{i \in S} (-1)^{x_i}$ for some $S \subseteq [n]$.
Bell sampling and stabilizer states

- Up to an overall phase every stabilizer state $|\psi\rangle$ can be written in the form

$$|\psi\rangle = \frac{1}{\sqrt{|A|}} \sum_{x \in A} i^{\ell(x)} (-1)^{q(x)} |x\rangle,$$

where A is an affine subspace of \mathbb{F}_2^n, and $\ell, q : \{0, 1\}^n \to \{0, 1\}$ are linear and quadratic (respectively) polynomials over \mathbb{F}_2 [Dehaene and Moor ’02].

- As ℓ is linear, $\ell(x) = s \cdot x$ for some $s \in \{0, 1\}^n$.

- So $(-1)^{\ell(x)} = \prod_{i \in S} (-1)^{x_i}$ for some $S \subseteq [n]$.

- Hence

$$|\psi^*\rangle = \sigma_{10}^{\otimes S} |\psi\rangle.$$
Bell sampling and stabilizer states

If we perform Bell sampling on $|\psi\rangle \otimes^2$, we receive outcome t with probability

$$\frac{|\langle \psi | \sigma_t | \psi^* \rangle|^2}{2^n} = \frac{|\langle \psi | \sigma_t \sigma_1^{S} | \psi \rangle|^2}{2^n}.$$
Bell sampling and stabilizer states

- If we perform Bell sampling on $|\psi\rangle \otimes^2$, we receive outcome t with probability

$$\frac{|\langle \psi | \sigma_t | \psi^* \rangle|^2}{2^n} = \frac{|\langle \psi | \sigma_t \sigma_1 \otimes^S | \psi \rangle|^2}{2^n}.$$

- Let G stabilize $|\psi\rangle$ and let T denote the set of strings $t \in \{0,1\}^{2n}$ such that $\sigma_t \in G$, up to a phase. Then T is an n-dimensional linear subspace of \mathbb{F}_2^{2n}.

Bell sampling and stabilizer states

If we perform Bell sampling on $|\psi\rangle \otimes^2$, we receive outcome t with probability

$$\frac{|\langle \psi | \sigma_t | \psi^* \rangle|^2}{2^n} = \frac{|\langle \psi | \sigma_t \sigma_{10}^s | \psi \rangle|^2}{2^n}.$$

Let G stabilize $|\psi\rangle$ and let T denote the set of strings $t \in \{0, 1\}^{2n}$ such that $\sigma_t \in G$, up to a phase. Then T is an n-dimensional linear subspace of \mathbb{F}_2^{2n}.

Bell sampling gives an outcome r which is uniformly distributed on the set $\{t \oplus s : t \in T\}$ for some $s \in \{0, 1\}^{2n}$.

For any two such outcomes r_1, r_2, the sum $r_1 \oplus r_2$ is uniformly distributed in T.

Although T does not contain information about phases, determining T suffices to uniquely determine $|\psi\rangle$. Once we have found a basis for T, we can measure $|\psi\rangle$ in the eigenbasis of each corresponding Pauli matrix M to decide whether $M|\psi\rangle = |\psi\rangle$ or $M|\psi\rangle = -|\psi\rangle$.

Bell sampling and stabilizer states
For any two such outcomes r_1, r_2, the sum $r_1 \oplus r_2$ is uniformly distributed in T.

In order to find a basis for T, we can therefore produce $k + 1$ Bell samples r_0, r_1, \ldots, r_k and consider the uniformly random elements of T given by $r_1 \oplus r_0, r_2 \oplus r_0, \ldots, r_k \oplus r_0$.

If the dimension of the subspace of \mathbb{F}_2^{2n} spanned by these vectors is n, any basis of this subspace is a basis for T.

Bell sampling and stabilizer states
Bell sampling and stabilizer states

- For any two such outcomes r_1, r_2, the sum $r_1 \oplus r_2$ is uniformly distributed in T.

- In order to find a basis for T, we can therefore produce $k + 1$ Bell samples r_0, r_1, \ldots, r_k and consider the uniformly random elements of T given by $r_1 \oplus r_0, r_2 \oplus r_0, \ldots, r_k \oplus r_0$.

- If the dimension of the subspace of \mathbb{F}_2^{2n} spanned by these vectors is n, any basis of this subspace is a basis for T.

- Although T does not contain information about phases, determining T suffices to uniquely determine $|\psi\rangle$.

- Once we have found a basis for T, we can measure $|\psi\rangle$ in the eigenbasis of each corresponding Pauli matrix M to decide whether $M|\psi\rangle = |\psi\rangle$ or $M|\psi\rangle = -|\psi\rangle$.
Learning stabilizer states

The algorithm

1. Set $S = \emptyset$.

2. Create two copies of $|\psi\rangle$ and perform Bell sampling, obtaining outcome r_0.

3. Repeat the following 2^n times:
 1. Create two copies of $|\psi\rangle$ and perform Bell sampling, obtaining outcome r.
 2. Add $r \oplus r_0$ to S.

4. Determine a basis for S; call this basis B.

5. For each element of B, measure a copy of $|\psi\rangle$ in the eigenbasis of the corresponding Pauli matrix M to determine whether $M|\psi\rangle = |\psi\rangle$ or $M|\psi\rangle = -|\psi\rangle$.

Learning stabilizer states

The algorithm

1. Set $S = \emptyset$.
2. Create two copies of $|\psi\rangle$ and perform Bell sampling, obtaining outcome r_0.

Detailed Steps:

- **Step 1:** Set $S = \emptyset$.
- **Step 2:** Create two copies of $|\psi\rangle$ and perform Bell sampling, obtaining outcome r_0. Then, add $r_\oplus r_0$ to S.
- **Step 3:** Determine a basis for S; call this basis B.
- **Step 4:** For each element of B, measure a copy of $|\psi\rangle$ in the eigenbasis of the corresponding Pauli matrix to determine whether $M|\psi\rangle = |\psi\rangle$ or $M|\psi\rangle = -|\psi\rangle$.

Learning stabilizer states

The algorithm

1. Set $S = \emptyset$.
2. Create two copies of $|\psi\rangle$ and perform Bell sampling, obtaining outcome r_0.
3. Repeat the following $2n$ times:
 - Create two copies of $|\psi\rangle$ and perform Bell sampling, obtaining outcome r_0.
 - Add $r \oplus r_0$ to S.
4. Determine a basis for S; call this basis B.
5. For each element of B, measure a copy of $|\psi\rangle$ in the eigenbasis of the corresponding Pauli matrix M to determine whether $M|\psi\rangle = |\psi\rangle$ or $M|\psi\rangle = -|\psi\rangle$.
Learning stabilizer states

The algorithm

1. Set $S = \emptyset$.
2. Create two copies of $|\psi\rangle$ and perform Bell sampling, obtaining outcome r_0.
3. Repeat the following $2n$ times:
 1. Create two copies of $|\psi\rangle$ and perform Bell sampling, obtaining outcome r.
 2. Add $r \oplus r_0$ to S.
Learning stabilizer states

The algorithm

1. Set $S = \emptyset$.
2. Create two copies of $|\psi\rangle$ and perform Bell sampling, obtaining outcome r_0.
3. Repeat the following $2n$ times:
 1. Create two copies of $|\psi\rangle$ and perform Bell sampling, obtaining outcome r.
 2. Add $r \oplus r_0$ to S.
4. Determine a basis for S; call this basis B.
Learning stabilizer states

The algorithm

1. Set $S = \emptyset$.
2. Create two copies of $|\psi\rangle$ and perform Bell sampling, obtaining outcome r_0.
3. Repeat the following $2n$ times:
 1. Create two copies of $|\psi\rangle$ and perform Bell sampling, obtaining outcome r.
 2. Add $r \oplus r_0$ to S.
4. Determine a basis for S; call this basis B.
5. For each element of B, measure a copy of $|\psi\rangle$ in the eigenbasis of the corresponding Pauli matrix M to determine whether $M|\psi\rangle = |\psi\rangle$ or $M|\psi\rangle = -|\psi\rangle$.
Summary of learning stabilizer states

- The algorithm uses $O(n)$ copies of $|\psi\rangle$. Time complexity is dominated by finding a basis for S ($O(n^3)$ time or better).

- The algorithm fails (i.e. does not identify $|\psi\rangle$) if each of 2^n samples $r \oplus r_0$ lies in a subspace of T of dimension at most $n-1$. This occurs with probability at most 2^{-n}.
Summary of learning stabilizer states

- The algorithm uses $O(n)$ copies of $|\psi\rangle$. Time complexity is dominated by finding a basis for S ($O(n^3)$ time or better).

- The algorithm fails (i.e., does not identify $|\psi\rangle$) if each of the 2^n samples $r \oplus r_0$ lies in a subspace of T of dimension at most $n - 1$. This occurs with probability at most 2^{-n}.
Imagine we want to compute a function of the form

\[h(x) = g(f^1(x^1), \ldots, f^n(x^n)), \]

where \(x^i \in \{0, 1\}^{m_i} \), using the minimal number of classical queries to \(x \).
Imagine we want to compute a function of the form

\[h(x) = g(f^1(x^1), \ldots, f^n(x^n)), \]

where \(x^i \in \{0, 1\}^{m_i} \), using the minimal number of classical queries to \(x \).

One strategy to compute \(h \):

- Replace \(g \) with the function \(\bar{g} \) given by substituting the values taken by any constant functions \(f^i \) into \(g \).
- Compute \(\bar{g} \) using efficient algorithms for \(f^1, \ldots, f^n \) as black boxes.
Bonus: a composition theorem for decision tree complexity

Imagine we want to compute a function of the form

$$h(x) = g(f^1(x^1), \ldots, f^n(x^n)),$$

where $x^i \in \{0, 1\}^{m_i}$, using the minimal number of classical queries to x.

One strategy to compute h:

- Replace g with the function \bar{g} given by substituting the values taken by any constant functions f^i into g.
- Compute \bar{g} using efficient algorithms for f^1, \ldots, f^n as black boxes.

"Theorem": The x^i inputs are independent, so this is the most efficient way to compute g.
Counterexample to “theorem”

Let $f : \{0, 1\}^2 \to \{0, 1, 2\}$ and $g : \{0, 1, 2\}^2 \to \{0, 1, 2\}$ be defined by the decision trees below (where edges correspond to elements of $\{0, 1\}$ or $\{0, 1, 2\}$ in ascending order from left to right).

\[f : \quad \begin{array}{c}
\text{0} \\
\text{x1} \\
\text{x2} \\
\text{1} \\
\text{2}
\end{array} \quad \begin{array}{c}
\text{g :} \\
\text{y1} \\
\text{y2} \\
\text{1} \\
\text{2}
\end{array} \]
Counterexample to “theorem”

Let $f : \{0, 1\}^2 \to \{0, 1, 2\}$ and $g : \{0, 1, 2\}^2 \to \{0, 1, 2\}$ be defined by the decision trees below (where edges correspond to elements of $\{0, 1\}$ or $\{0, 1, 2\}$ in ascending order from left to right).

Set $h(x_1, x_2, x_3, x_4) = g(f(x_1, x_2), f(x_3, x_4))$. Then h can be computed using only 3 queries:
Nevertheless...

Theorem

The above algorithm is optimal when \(\text{range}(f^i) \subseteq \{0, 1\} \) for all \(i \).
Nevertheless…

Theorem

The above algorithm is optimal when \(\text{range}(f^i) \subseteq \{0, 1\} \) for all \(i \).

Some notes on this result:

- Also holds for computing partial functions and relations.
Nevertheless...

Theorem
The above algorithm is optimal when \(\text{range}(f^i) \subseteq \{0, 1\} \) for all \(i \).

Some notes on this result:

- Also holds for computing partial functions and relations.
- Implies various corollaries, e.g. a direct sum theorem for decision tree complexity (a special case of a result of [Jain, Klauck and Santha ’10]) and optimal bounds for iteratively defined functions.
Nevertheless...

Theorem

The above algorithm is optimal when \(\text{range}(f^i) \subseteq \{0, 1\} \) for all \(i \).

Some notes on this result:

- Also holds for computing partial functions and relations.
- Implies various corollaries, e.g. a direct sum theorem for decision tree complexity (a special case of a result of [Jain, Klauck and Santha '10]) and optimal bounds for iteratively defined functions.
- The quantum equivalent of this result was proven by [Høyer, Lee and Špalek '07] and [Reichardt '09].
Summary

We can learn...

- ...n-bit strings with $O(\sqrt{n})$ wildcard queries;

- ...degree d n-variate multilinear polynomials with $O(n^{d-1})$ queries;

- ...n-qubit stabilizer states with $O(n)$ copies.
Summary

We can learn...

- ...n-bit strings with $O(\sqrt{n})$ wildcard queries;
- ...degree d n-variate multilinear polynomials with $O(n^{d-1})$ queries;
- ...n-qubit stabilizer states with $O(n)$ copies.

Open problems:

- Determine the quantum query complexity of CGT.
- Other applications of SWW! A possible example: testing juntas.
- What about testing stabilizer states?
Thanks!

Some further reading:

- The algorithm for search with wildcards: arXiv:1210.1148 (joint work with Andris Ambainis)

- The composition theorem for decision tree complexity: arXiv:1302.4207
Proving the measurement lemma

We finally need to prove we can distinguish the $|\psi^k_x\rangle$ states. We use the pretty good measurement (PGM).
Proving the measurement lemma

We finally need to prove we can distinguish the $|\psi^k_x\rangle$ states. We use the pretty good measurement (PGM).

Lemma

The probability that the PGM outputs y on input $|\psi^k_x\rangle$ is precisely $(\sqrt{G})_{xy}^2$, where

$$G_{xy} = \langle \psi^k_x | \psi^k_y \rangle = \frac{1}{\binom{n}{k}} \sum_{S \subseteq [n], |S| = k} [x_S = y_S] = \frac{(n-d(x,y))}{\binom{n}{k}}.$$
We finally need to prove we can distinguish the $|\psi^k_x\rangle$ states. We use the pretty good measurement (PGM).

Lemma

The probability that the PGM outputs y on input $|\psi^k_x\rangle$ is precisely $(\sqrt{G})_{xy}^2$, where

$$G_{xy} = \langle \psi^k_x | \psi^k_y \rangle = \frac{1}{\binom{n}{k}} \sum_{S \subseteq [n], |S| = k} [x_S = y_S] = \frac{(n-d(x,y))}{\binom{n}{k}} \cdot \frac{\binom{n}{k}}{\binom{n}{k}}.$$

We want to bound $D_k := \sum_{y \in \{0,1\}^n} d(x, y) (\sqrt{G}_{xy})^2$.

We finally need to prove we can distinguish the $|\psi_x^k\rangle$ states. We use the pretty good measurement (PGM).

Lemma

The probability that the PGM outputs y on input $|\psi_x^k\rangle$ is precisely $(\sqrt{G})_{xy}^2$, where

$$
G_{xy} = \langle \psi_x^k | \psi_y^k \rangle = \frac{1}{\binom{n}{k}} \sum_{S \subseteq [n], |S| = k} [x_S = y_S] = \frac{(n-d(x,y))}{\binom{n}{k}}.
$$

- We want to bound $D_k := \sum_{y \in \{0,1\}^n} d(x, y)(\sqrt{G_{xy}})^2$.
- G_{xy} depends only on $x \oplus y$, so G is diagonalised by the Fourier transform over \mathbb{Z}_2^n and D_k does not depend on x.
Proving the measurement lemma

We finally need to prove we can distinguish the $|\psi_x^k\rangle$ states. We use the pretty good measurement (PGM).

Lemma

The probability that the PGM outputs y on input $|\psi_x^k\rangle$ is precisely $(\sqrt{G})_{xy}^2$, where

$$G_{xy} = \langle \psi_x^k | \psi_y^k \rangle = \frac{1}{\binom{n}{k}} \sum_{S \subseteq [n], |S| = k} [x_S = y_S] = \frac{(n-d(x,y))^k}{\binom{n}{k}}.$$

- We want to bound $D_k := \sum_{y \in \{0,1\}^n} d(x, y)(\sqrt{G_{xy}})^2$.
- G_{xy} depends only on $x \oplus y$, so G is diagonalised by the Fourier transform over \mathbb{Z}_2^n and D_k does not depend on x.
- D_k can be upper bounded using Fourier duality and some combinatorics.