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Introduction

Constraint satisfaction problems are ubiquitous in computer
science.

Two classic examples:

The 3-SAT problem: given a boolean formula in
conjunctive normal form with at most 3 variables per
clause, is there a satisfying assignment to the formula?

(x1 ∨ ¬x2 ∨ x3)∧ (¬x1 ∨ x2)∧ (x4)

Solving 3-term linear equations: given a system of linear
equations over F2 with at most 3 variables per equation, is
there a solution to all the equations?

x1 + x2 + x4 = 0, x2 + x3 = 1, x1 + x4 = 0

The first of these is NP-complete, the second is in P.
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General constraint satisfaction problems

A very general way to study these kind of problems is via the
framework of the problem S-CSP.

Let S be a set of constraints, where a constraint is a
boolean function acting on a constant number of bits.

An example constraint: f (a, b, c) = a ∨ b ∨ ¬c.

An instance of S-CSP on n bits is specified by a sequence
of constraints picked from S applied to subsets of the bits.

Our task is to determine whether there exists an
assignment to the variables such that all the constraints
are satisfied (evaluate to 1).

The complexity of the S-CSP problem depends on the set S.
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A dichotomy theorem

A remarkable theorem of Schaefer allows this complexity to be
completely characterised.

Theorem [Schaefer ’78]

S-CSP is either in P or NP-complete. Further, which of these is
the case can be determined easily for a given S.

This result has since been extended in a number of directions.

In particular, [Creignou ’95] and [Khanna, Sudan and Williamson
’97] have completely characterised the complexity of the
maximisation problem k-Max-CSP for boolean constraints.
Here we are again given a system of constraints, but the
goal is to maximise the number of constraints we can
satisfy.
An example problem of this kind is MAX-CUT.
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Noncommutative CSPs
We can think of CSPs in the following matrix picture:

Each constraint C on k bits gives a 2k × 2k diagonal matrix
M of 0’s and 1’s such that Mxx = 1 − C(x).

e.g. f (x1, x2) = x1 ∨ ¬x2:
( 0

1
0

0

)
To apply this constraint to bits in the set T ⊆ {1, . . . ,n}, we
form the 2n × 2n matrix M(T) = MT ⊗ ITc .

Then x ∈ {0, 1}n satisfies this constraint⇔M(T)
xx = 0.

Summing over all the constraints, we get an overall
2n × 2n matrix whose lowest eigenvalue is 0 if and only if
there exists x satisfying all the constraints.

In this picture, it’s natural (?) to generalise by allowing each
constraint to be an arbitrary Hermitian 2k × 2k matrix.
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Local Hamiltonian problems
This natural quantum (noncommutative) generalisation of
CSPs is called k-local Hamiltonian [Kitaev, Shen and Vyalyi ’02].

A k-local Hamiltonian is a Hermitian matrix H on the
space of n qubits which can be written as

H =
∑

i

H(i),

where each H(i) acts non-trivially on at most k qubits.

k-local Hamiltonian

We are given a k-local Hamiltonian H =
∑m

i=1 H(i) on n qubits,
and two numbers a < b such that b − a > 1/poly(n). Promised
that the smallest eigenvalue of H is either at most a, or at least
b, our task is to determine which of these is the case.

NB: we assume throughout that all parameters are
“reasonable” (e.g. rational, polynomial in n).
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Hardness of k-local Hamiltonian

How difficult is k-local Hamiltonian?

k-local Hamiltonian is a generalisation of k-Max-CSP,
so is at least NP-hard.

[Kitaev ’02] proved that 5-local Hamiltonian is in fact
QMA-complete.

QMA is the quantum analogue of NP: the class of
problems whose “yes” instances have quantum proofs
that can be checked efficiently by a quantum computer.

Later improved to show that even 2-local Hamiltonian

is QMA-complete [Kempe, Kitaev and Regev ’06].

1-local Hamiltonian is easily seen to be in P.
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k-local Hamiltonian and physics
A major motivation for this area is applications to physics.

One of the most important themes in condensed-matter
physics is calculating the ground-state energies of
physical systems; this is essentially an instance of k-local

Hamiltonian.
For example, the (general) Ising model corresponds to the
problem of finding the lowest eigenvalue of a
Hamiltonian of the form

H =
∑
i<j

αijZiZj.

Notation: X =
(

0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
.

This connection to physics motivates the study of k-local

Hamiltonian with restricted types of interactions.
The aim: to prove QMA-hardness of problems of direct
physical interest.
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Previously known results

A number of special cases of k-local Hamiltonian have
previously been shown to be QMA-complete, e.g.:

[Schuch and Verstraete ’09]:

H =
∑

(i,j)∈E

XiXj + YiYj + ZiZj +
∑

k

αkXk + βkYk + γkZk,

where E is the set of edges of a 2-dimensional square
lattice;

[Biamonte and Love ’08]:

H =
∑
i<j

JijXiXj + KijZiZj +
∑

k

αkXk + βkZk,

or
H =

∑
i<j

JijXiZj + KijZiXj +
∑

k

αkXk + βkZk.
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Previously known results

. . . but some other interesting special cases are not thought to
be QMA-complete:

It has been shown by [Bravyi et al. ’06] that k-local

Hamiltonian is in the complexity class AM if the
Hamiltonian is restricted to be stoquastic.

A stoquastic Hamiltonian has all off-diagonal entries real
and non-positive in the computational basis. Such
Hamiltonians occur in a wide variety of physical systems.

As AM is in the polynomial hierarchy, it is considered
unlikely that k-local Hamiltonian with stoquastic
Hamiltonians is QMA-complete.

Later sharpened by [Bravyi, Bessen and Terhal ’06], who
showed that this problem is StoqMA-complete, where
StoqMA is a complexity class between MA and AM.
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The S-Hamiltonian problem

Let S be a fixed subset of Hermitian matrices on at most k
qubits, for some constant k.

S-Hamiltonian

S-Hamiltonian is the special case of k-local Hamiltonian

where the overall Hamiltonian H is specified by a sum of
matrices Hi, each of which acts non-trivially on at most k
qubits, and whose non-trivial part is proportional to a matrix
picked from S.

We then have the following general question:

Problem
Given S, characterise the computational complexity of
S-Hamiltonian.
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Some examples

The S-Hamiltonian problem encapsulates many
much-studied problems in physics. For example:

The (general) Ising model:

H =
∑
i<j

αijZiZj.

For us this is the problem {ZZ}-Hamiltonian; it is known
to be NP-complete.

The (general) Ising model with transverse magnetic fields:

H =
∑
i<j

αijZiZj +
∑

k

βkXk.

For us this is the problem {ZZ,X}-Hamiltonian. Its
complexity is more interesting. . .
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The complexity of the transverse Ising model

The problem is clearly NP-hard, by taking the weights βk
of the X terms to be 0.

By conjugating any transverse Ising model Hamiltonian
by local Z operations on each qubit k such that βk > 0,
which maps X 7→ −X and does not change the
eigenvalues, we can assume βk 6 0.

The resulting Hamiltonian is stoquastic, so
{ZZ,X}-Hamiltonian ∈ StoqMA.
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Some more examples

Two other cases previously studied in condensed-matter
physics:

The (general) Heisenberg model:

H =
∑
i<j

αij(XiXj + YiYj + ZiZj).

For us this is the problem {XX + YY + ZZ}-Hamiltonian.

The (general) XY model:∑
i<j

αij(XiXj + YiYj).

For us this is the problem {XX + YY}-Hamiltonian.

We use “general” in the titles to emphasise that there is no
implied spatial locality or underlying interaction graph.
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Our main result

Let S be an arbitrary fixed subset of Hermitian matrices on at
most 2 qubits.

Theorem
1 If every matrix in S is 1-local, S-Hamiltonian is in P;

2 Otherwise, if there exists U ∈ SU(2) such that U locally
diagonalises S, then S-Hamiltonian is NP-complete;

3 Otherwise, if there exists U ∈ SU(2) such that, for each
2-qubit matrix Hi ∈ S, U⊗2Hi(U†)⊗2 = αiZ⊗2 + AiI + IBi,
where αi ∈ R and Ai, Bi are arbitrary 2× 2 Hermitian
matrices, then S-Hamiltonian is polytime-equivalent to
the transverse Ising model;

4 Otherwise, S-Hamiltonian is QMA-complete.
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Corollaries

In particular, we have that:

The (general) Heisenberg model is QMA-complete
(S = {XX + YY + ZZ})
The (general) XY model is QMA-complete (S = {XX+YY})

. . . as well as many other cases.

We can think of this result as a
quantum analogue of Schaefer’s dichotomy theorem.

The second case is stated in terms of “local diagonalisation”:

We say that U ∈ SU(2) locally diagonalises a 2k × 2k

matrix M if U⊗kM(U†)⊗k is diagonal.
We say that U locally diagonalises S if U locally
diagonalises M for all M ∈ S.
Note that matrices in S may be of different sizes.
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Remarks on this result

We assume that, given a set of interactions S, we are
allowed to produce an overall Hamiltonian by applying
each interaction M ∈ S scaled by an arbitrary real weight,
which can be either positive or negative.

We assume that we are allowed to apply the interactions
in S across any choice of subsets of the qubits. That is, the
interaction pattern is not constrained by any spatial
locality, planarity or symmetry considerations.

Some of the interactions in S could be non-symmetric
under permutation of the qubits on which they act. We
assume that we are allowed to apply such interactions to
any permutation of the qubits.

We can assume without loss of generality that the identity
matrix I ∈ S (we can add an arbitrary “energy shift”).
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The proof: easy parts

Cases (1) and (2) are the easiest:

1 The minimal eigenvalue of a sum of 1-local terms is the
sum of the minimal eigenvalues.

2 If every interaction in S is diagonal, the minimal
eigenvalue is achieved on a computational basis state;
NP-completeness follows from showing that any 2-body
diagonal interaction can be produced.

Case (3) isn’t too difficult either:

It’s clearly no harder than {ZZ}-Hamiltonian with
arbitrary local terms; these arbitrary terms turn out to
give no additional power.

The most interesting case is (4). . .
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Proof techniques
The basic idea behind the proof is to use reductions.

“To prove QMA-hardness of A-Hamiltonian,
approximately simulate some other set of interactions
B, where B-Hamiltonian is QMA-hard. ”

Given two Hamiltonians H and V, we form H̃ = V + ∆H,
where ∆ is a large parameter.

Then H̃<∆/2, the low-energy part of H̃, is effectively the
same as V−, the projection of V onto the lowest-energy
eigenspace of H.

Projection Lemma (informal, based on [Oliveira-Terhal ’08])

If ∆ = δ‖V‖2, then

‖H̃<∆/2 − V−‖ = O(1/δ).
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Example: the Heisenberg model

The case S = {XX + YY + ZZ} illustrates the difficulties that we
face. Let

H =
∑
i<j

αij(XiXj + YiYj + ZiZj).

XX + YY + ZZ is invariant under conjugation by U⊗2 for
all U ∈ SU(2).

So the eigenspaces of H are all invariant under
conjugation by U⊗n!

This means that we cannot hope to implement an arbitrary
Hamiltonian using only this interaction.

Just as with classical CSPs, the way round this is to use
encodings.
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Example: the Heisenberg model

We would like to find a gadget that encodes qubits, and
lets us encode operations across qubits.

We try to encode a logical qubit within a triangle of 3
physical qubits:

This is inspired by previous work on universality of the
exchange interaction [Kempe et al. ’00].



Example: the Heisenberg model

We would like to find a gadget that encodes qubits, and
lets us encode operations across qubits.

We try to encode a logical qubit within a triangle of 3
physical qubits:

This is inspired by previous work on universality of the
exchange interaction [Kempe et al. ’00].



Example: the Heisenberg model

We would like to find a gadget that encodes qubits, and
lets us encode operations across qubits.

We try to encode a logical qubit within a triangle of 3
physical qubits:

This is inspired by previous work on universality of the
exchange interaction [Kempe et al. ’00].



Example: the Heisenberg model
The Heisenberg interaction is equivalent to the swap (flip)
operation

F =
1
2
(I + XX + YY + ZZ).

The first step: decompose the three qubits (labelled 1-3)
into the 4-dim symmetric subspace S1 of 3 qubits and its
orthogonal complement S2.

On S1, F acts as the identity. On S2, with respect to the
right basis we have

F12 + F13 + F23 = 0, −F12 = Z⊗ I,
1√
3
(F13 − F23) = X⊗ I.

By applying strong F interactions across all pairs of
qubits, we can effectively project onto S2.

Then we can apply Z and X on two logical pseudo-qubits.
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Example: the Heisenberg model
We would now like to apply pairwise interactions across
logical qubits.

This can almost be done by applying F interactions across
different choices of physical qubits.
Let the logical qubits in the first (resp. second) triangle be
labelled (1,2) (resp. (3,4)).
It turns out that, by applying suitable linear combinations
across qubits, we can effectively make

X1X3(2F − I)24, Z1Z3(2F − I)24, I1I3(2F − I)24.
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Example: the Heisenberg model
So, using Heisenberg interactions alone, we can implement an
arbitrary (logical) Hamiltonian of the form

H =

n∑
k=1

(αkXk + βkZk)Ik ′ +
∑
i<j

(γijXiXj + δijZiZj)(2F − I)i ′j ′ ,

where we identify the i’th logical qubit pair with indices (i, i ′).

We would like to remove the (2F − I) operators.
To do this, we force the primed qubits to be in some state
by very strong Fi ′j ′ interactions: we add the (logical) term

G = ∆
∑
i<j

wijFi ′j ′

where wij are some weights and ∆ is very large.
We can do this by making IiIj(2F − I)i ′j ′ as on last slide.
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Example: the Heisenberg model

If the ground state |ψ〉 of G is non-degenerate, the primed
qubits will all be effectively projected onto the ground state,
and H will become (up to a small additive error)

H̃ =

n∑
k=1

αkXk + βkZk +
∑
i<j

(γijXiXj + δijZiZj)〈ψ|(2F − I)i ′j ′ |ψ〉.

So we need to find a G such that the ground state is
non-degenerate and 〈ψ|(2F − I)i ′j ′ |ψ〉 6= 0 for all i, j (and
also these quantities should be easily computable).

Not so easy! This corresponds to an exactly solvable
special case of the Heisenberg model, and not many of
these are known.

Luckily for us, the Lieb-Mattis model [Lieb and Mattis ’62]
has precisely the properties we need.
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The Lieb-Mattis model
The Lieb-Mattis model describes Hamiltonians of the form

HLM =
∑

i∈A,j∈B

XiXj + YiYj + ZiZj,

where A and B are disjoint subsets of qubits.

Claim [Lieb and Mattis ’62, . . . ]

If |A| = |B| = n, the ground state |φ〉 of HLM is unique. For i
and j such that i, j ∈ A or i, j ∈ B, 〈φ|Fij|φ〉 = 1. Otherwise,
〈φ|Fij|φ〉 = −2/n.

Using this claim, we can effectively implement any
Hamiltonian of the form

H̃ =

n∑
k=1

αkXk + βkZk +
∑
i<j

γijXiXj + δijZiZj,
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The normal form
We’ve dealt with the Heisenberg model. . . what about
everything else?

We can simplify things using a very similar
normal form to one identified by [Dür et al. ’01, Bennett et al. ’02]:

Lemma
Let H be a 2-qubit interaction which is symmetric under
swapping qubits. Then there exists U ∈ SU(2) such that the
2-local part of U⊗2H(U†)⊗2 is of the form

αXX + βYY + γZZ.

Why is this useful? If we conjugate each term by U⊗2 in a
2-local Hamiltonian with only H interactions, it doesn’t change
the eigenvalues:

∑
i6=j

αij(U⊗2H(U†)⊗2)ij = U⊗n

∑
i 6=j

αijHij

 (U†)⊗n.
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The other QMA-complete cases

Our normal form drastically reduces the number of
interactions we have to consider to a few special cases:

The XY model S = {XX + YY} uses similar techniques to
the Heisenberg model, but the gadgets are a bit simpler.
For S = {XX + αYY + βZZ}, we can reduce from the XY
model.
We also need to deal with the antisymmetric case
S = {XZ − ZX}.
For interactions with 1-local terms, using gadgets we can
effectively delete the 1-local parts.

Finding and verifying each of the gadgets required was
somewhat painful and required the use of a computer algebra
package.
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Conclusions and open problems

We have (almost) completely characterised the complexity of
2-local qubit Hamiltonians.

Despite this, our work is only just beginning. . .

What about k-qubit interactions for k > 2? We have a
complete characterisation here in the special case where
we assume that we are allowed access to arbitrary local
terms.

What about local dimension d > 2? Classically, the
complexity of d-ary CSPs is still unresolved.
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More open problems

What about restrictions on the interaction pattern or
weights? e.g. 1-dimensional systems, 2-D lattices, the
antiferromagnetic Heisenberg model etc.

See very recent independent work proving
QMA-hardness for S = {XX + YY,Z} when weights of
XX + YY terms are positive and weights of Z terms are
negative [Childs, Gosset and Webb ’13]. . .

What about quantum k-SAT?

Finally, what is the complexity of the transverse Ising
model? Our intuition: at least MA-hard. . . for now, we
encapsulate it as a new complexity class TIM.
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Thanks!

arXiv:1311.3161

For other further reading, several recent surveys on
Hamiltonian complexity are arXiv:1401.3916,
arXiv:1212.6312, arXiv:1106.5875.



Allowing local terms

One variant of this framework is to allow arbitrary local terms
(“magnetic fields”).

S-Hamiltonian with local terms

S-Hamiltonian with local terms is the special case of
S-Hamiltonian where S is assumed to contain X, Y, Z.

This is equivalent to S containing all 1-local interactions.

For any S, S-Hamiltonian with local terms is at least
as hard as S-Hamiltonian.

It is known that S-Hamiltonian with local terms is
QMA-complete when:

S = {XX + YY + ZZ} [Schuch and Verstraete ’09]

S = {XX,ZZ} or S = {XZ} [Biamonte and Love ’08]
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The case with local terms

Let S be a fixed subset of Hermitian matrices on at most k
qubits, for some constant k.

Theorem
Let S ′ be the subset formed by removing all 1-local terms from
each element of S, and then deleting all 0-local matrices. Then:

1 If S ′ is empty, S-Hamiltonian with local terms is in P;

2 Otherwise, if there exists U ∈ SU(2) such that U locally
diagonalises S ′, then S-Hamiltonian with local terms

is poly-time equivalent to the transverse Ising model;
3 Otherwise, S-Hamiltonian with local terms is

QMA-complete.
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The idea
The basic idea:

“To prove QMA-hardness of A-Hamiltonian,
approximately simulate some other set of interactions
B, where B-Hamiltonian is QMA-hard. ”

To do this, we use two kinds of reductions, both based on
perturbation theory.

The first-order perturbative gadgets we use are based on
ideas going back to [Oliveira and Terhal ’08] and [Schuch and
Verstraete ’08].

The basic idea: to implement an effective interaction
across two qubits a and c, add a new mediator qubit b
interacting with each of a and c, and put a strong 1-local
interaction on b.
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Example

Claim (similar to results of [Schuch and Verstraete ’08])
For any γ 6= 0, {XX + γZZ}-Hamiltonian with local terms

is QMA-complete.

We use the following perturbative gadget, taking ∆ to be a
large coefficient:

a b

∆|1〉〈1|
c

XX + γZZ XX + γZZ

This forces qubit b to (approximately) be in the state |0〉.

It turns out that, up to local and lower-order terms, the
effective interaction across the remaining qubits is

Heff ∝ XaXc.
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Example

So, given access to terms of the form XX + γZZ, we can
effectively make XX terms. By subtracting from
XX + γZZ, we can also make ZZ terms.

The claim follows from the result of [Biamonte and Love ’08]
that {XX,ZZ}-Hamiltonian with local terms is
QMA-complete.

We can similarly show that:

For any β,γ 6= 0, {XX + βYY + γZZ}-Hamiltonian with

local terms is QMA-complete.
{XZ − ZX}-Hamiltonian with local terms is
QMA-complete.

This turns out to be all the cases we need to complete the
characterisation of S-Hamiltonian with local terms!
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The different cases in the characterisation

To finish off the 2-local special case of S-Hamiltonian with

local terms:

If the 2-local part of any interaction in S is locally
equivalent to XX + βYY + γZZ or XZ − ZX, we have
QMA-completeness;

If the 2-local part of all the interactions is locally
equivalent to ZZ, using local rotations we can show
equivalence to the transverse Ising model;

If neither of these is true, we must have one interaction
equivalent to XX, another to AA for some A 6= X
(exercise!).

So we can make XX + AA, which suffices for
QMA-completeness.
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The k-local case for k > 2
We can generalise to S-Hamiltonian with local terms

when S contains k-qubit interactions, for any constant k > 2.

Basic idea: using local terms, produce effective (k − 1)-
qubit interactions from k-qubit interactions, via the gadget

a
∆|ψ〉〈ψ|

{a}c
I ⊗ A + X ⊗ B + Y⊗ C + Z⊗D

By letting |ψ〉 be the eigenvector of X, Y or Z with
eigenvalue ±1, we can produce the effective interactions
A± B, A± C and A±D (up to a small additive error).

By adding/subtracting these matrices we can make each
of {A,B,C,D}.

So either S is QMA-complete, or all 2-local “parts” of each
interaction in S are simultaneously diagonalisable by local
unitaries. This case turns out to be in TIM.
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S-Hamiltonian: The list of lemmas

It suffices to prove QMA-completeness of the following cases:

1 {XX + YY + ZZ}-Hamiltonian;

2 {XX + YY}-Hamiltonian;

3 {XZ − ZX}-Hamiltonian;

4 {XX + βYY + γZZ}-Hamiltonian;

5 {XX + βYY + γZZ + AI + IA}-Hamiltonian;

6 {XZ − ZX + AI − IA}-Hamiltonian.

In the above, β, γ are real numbers such that at least one of β
and γ is non-zero, and A is an arbitrary single-qubit Hermitian
matrix.



S-Hamiltonian: The list of lemmas

We also need some reductions from cases which are not
necessarily QMA-complete:

{ZZ,X,Z}-Hamiltonian reduces to
{ZZ + AI + IA}-Hamiltonian;
{ZZ,X,Z}-Hamiltonian reduces to
{ZZ,AI − IA}-Hamiltonian.

In the above, A is any single-qubit Hermitian matrix which
does not commute with Z.

And the very final case to consider:

Let S be a set of diagonal Hermitian matrices on at most 2
qubits. Then, if every matrix in S is 1-local,
S-Hamiltonian is in P. Otherwise, S-Hamiltonian is
NP-complete.



Example gadget for cases with 1-local terms
Let H := XX + βYY + γZZ + AI + IA, where β or γ is non-zero.

Lemma
{H}-Hamiltonian is QMA-complete.

The gadget used looks like:

a b

c d e

∆H

−∆H −∆H
∆H H

The ground state of G := Hab + Hcd − Hac − Hbd is
maximally entangled across the split (a-c : d).
So if we project Hde onto this state, the effective interaction
produced is A on qubit e.
This allows us to effectively delete the 1-local part of H.




