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Chess boards and dominoes

How many ways are there to cover the chess board with dominoes?
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Chess boards and dominoes

This is an instance of a more general problem. We turn the board
into a graph by replacing the squares with vertices, putting an edge
between adjacent squares.

Then putting dominoes on the board corresponds to selecting edges
from the graph such that no two edges share a vertex.

A covering of the board is known as a perfect matching.
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Matchings
More formally, we have:

Definition
Given a graph G = (V ,E), a matching M in G is a set of pairwise
non-adjacent edges. M is said to be perfect if every vertex of G is
included in M.

I Of course, G can only have a perfect matching if |V | is even.

I Not every graph with an even number of vertices has a perfect

matching, e.g. consider

I The number of perfect matchings can be exponential in the
number of vertices.
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The complexity of perfect matchings

There are many questions we might want to ask about perfect
matchings:

1. Can we find one efficiently?

Yes! A (version of a) famous algorithm of Jack Edmonds finds a
perfect matching, if it exists, in O(

√
|V ||E |) time.

2. Can we count the number of perfect matchings efficiently?
No! (Probably.) Counting the number of perfect matchings in a
general graph has been shown to be #P-complete (much
harder than NP-complete).

3. So are there any special cases we can deal with?
Yes! This lecture: an efficient algorithm for counting the number
of perfect matchings in a planar graph.

Ashley Montanaro
Counting perfect matchings in planar graphs Slide 6/25



The complexity of perfect matchings

There are many questions we might want to ask about perfect
matchings:

1. Can we find one efficiently?
Yes! A (version of a) famous algorithm of Jack Edmonds finds a
perfect matching, if it exists, in O(

√
|V ||E |) time.

2. Can we count the number of perfect matchings efficiently?
No! (Probably.) Counting the number of perfect matchings in a
general graph has been shown to be #P-complete (much
harder than NP-complete).

3. So are there any special cases we can deal with?
Yes! This lecture: an efficient algorithm for counting the number
of perfect matchings in a planar graph.

Ashley Montanaro
Counting perfect matchings in planar graphs Slide 6/25



The complexity of perfect matchings

There are many questions we might want to ask about perfect
matchings:

1. Can we find one efficiently?
Yes! A (version of a) famous algorithm of Jack Edmonds finds a
perfect matching, if it exists, in O(

√
|V ||E |) time.

2. Can we count the number of perfect matchings efficiently?

No! (Probably.) Counting the number of perfect matchings in a
general graph has been shown to be #P-complete (much
harder than NP-complete).

3. So are there any special cases we can deal with?
Yes! This lecture: an efficient algorithm for counting the number
of perfect matchings in a planar graph.

Ashley Montanaro
Counting perfect matchings in planar graphs Slide 6/25



The complexity of perfect matchings

There are many questions we might want to ask about perfect
matchings:

1. Can we find one efficiently?
Yes! A (version of a) famous algorithm of Jack Edmonds finds a
perfect matching, if it exists, in O(

√
|V ||E |) time.

2. Can we count the number of perfect matchings efficiently?
No! (Probably.) Counting the number of perfect matchings in a
general graph has been shown to be #P-complete (much
harder than NP-complete).

3. So are there any special cases we can deal with?
Yes! This lecture: an efficient algorithm for counting the number
of perfect matchings in a planar graph.

Ashley Montanaro
Counting perfect matchings in planar graphs Slide 6/25



The complexity of perfect matchings

There are many questions we might want to ask about perfect
matchings:

1. Can we find one efficiently?
Yes! A (version of a) famous algorithm of Jack Edmonds finds a
perfect matching, if it exists, in O(

√
|V ||E |) time.

2. Can we count the number of perfect matchings efficiently?
No! (Probably.) Counting the number of perfect matchings in a
general graph has been shown to be #P-complete (much
harder than NP-complete).

3. So are there any special cases we can deal with?

Yes! This lecture: an efficient algorithm for counting the number
of perfect matchings in a planar graph.

Ashley Montanaro
Counting perfect matchings in planar graphs Slide 6/25



The complexity of perfect matchings

There are many questions we might want to ask about perfect
matchings:

1. Can we find one efficiently?
Yes! A (version of a) famous algorithm of Jack Edmonds finds a
perfect matching, if it exists, in O(

√
|V ||E |) time.

2. Can we count the number of perfect matchings efficiently?
No! (Probably.) Counting the number of perfect matchings in a
general graph has been shown to be #P-complete (much
harder than NP-complete).

3. So are there any special cases we can deal with?
Yes! This lecture: an efficient algorithm for counting the number
of perfect matchings in a planar graph.

Ashley Montanaro
Counting perfect matchings in planar graphs Slide 6/25



Planar graphs

Definition
A graph is said to be planar if it can be drawn in the 2D plane in
such a way that its edges intersect only at its vertices.

For example:

Planar Not planar Planar

Many graphs that occur in real-world applications are planar.
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Counting perfect matchings in planar graphs
We start by making the problem more mathematically tractable.

I Let G = (V ,E) be a graph on n vertices, where n is even.
Define Aij = 1⇔ (i , j) ∈ E (A is the adjacency matrix of G).

I Define PM(n) to be the set of partitions of n elements into pairs.
(e.g. PM(4) = {[{1,2}, {3,4}], [{1,3}, {2,4}], [{1,4}, {2,3}]})

I Each element of PM(n) can be thought of as a permutation of
the integers between 1 and n, and gives a potential perfect
matching of G.

I So we want to compute the following quantity:

PerfMatch(G) =
∑

M∈PM(n)

∏
(i,j)∈M

Aij .
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A simple example

G =
3 4

21
A =


0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0



PM(4) = {[{1,2}, {3,4}], [{1,3}, {2,4}], [{1,4}, {2,3}]}.

PerfMatch(G) =
∑

M∈PM(n)

∏
(i,j)∈M

Aij

= A12A34 + A13A24 + A14A23

= 2.
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Pfaffians
We will try to compute PerfMatch(G) using Pfaffians (“perfect
matchings with signs”).

Definition
The Pfaffian Pf(A) of an n × n matrix A is defined as

Pf(A) =
∑

M∈PM(n)

sgn(M)
∏

(i,j)∈M

Aij ,

where sgn(M) is the sign of M as a permutation of n elements.

Recall that the sign of a permutation σ is 1 if σ contains an even
number of transpositions (exchanges of 2 elements), and −1 if σ
contains an odd number of transpositions.

For example, sgn((2,1,4,3)) = 1, sgn((3,2,1,4)) = −1.
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Why think about Pfaffians?

Theorem (Muir, 1882)

Let A be a skew-symmetric matrix (Aij = −Aji ). Then
Pf(A)2 = det(A), where det(A) is the determinant of A.

I The determinant of an n × n matrix can be computed in O(n3)
operations (or fewer).

I So the Pfaffian of a skew-symmetric matrix can be computed
efficiently, up to a sign (despite the fact that it is a sum over
exponentially many things).

I So, if we can find some skew-symmetric matrix A such that
Pf(A) = ±PerfMatch(G), we can compute PerfMatch(G)
efficiently!
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Turning this idea into an algorithm

1. We produce a directed graph G′ from G by orienting each edge
of G in some direction.

2. This gives us a skew-symmetric adjacency matrix A′ (A′ij = 1 if
there is an edge i → j ; A′ij = −1 if there is an edge j → i).

3. We want Pf(A′) = ±PerfMatch(G), i.e. all the terms in the
Pfaffian to have the same sign.

This will be the case when, for all M ∈ PM(n) such that M is a
perfect matching of G, ∏

(i,j)∈M

A′ij = sgn(M) · s,

for some s = ±1, which is the same for all M. If this holds, G′ is said
to be a Pfaffian orientation of G.

Ashley Montanaro
Counting perfect matchings in planar graphs Slide 12/25



Turning this idea into an algorithm

1. We produce a directed graph G′ from G by orienting each edge
of G in some direction.

2. This gives us a skew-symmetric adjacency matrix A′ (A′ij = 1 if
there is an edge i → j ; A′ij = −1 if there is an edge j → i).

3. We want Pf(A′) = ±PerfMatch(G), i.e. all the terms in the
Pfaffian to have the same sign.

This will be the case when, for all M ∈ PM(n) such that M is a
perfect matching of G, ∏

(i,j)∈M

A′ij = sgn(M) · s,

for some s = ±1, which is the same for all M. If this holds, G′ is said
to be a Pfaffian orientation of G.

Ashley Montanaro
Counting perfect matchings in planar graphs Slide 12/25



Turning this idea into an algorithm

1. We produce a directed graph G′ from G by orienting each edge
of G in some direction.

2. This gives us a skew-symmetric adjacency matrix A′ (A′ij = 1 if
there is an edge i → j ; A′ij = −1 if there is an edge j → i).

3. We want Pf(A′) = ±PerfMatch(G), i.e. all the terms in the
Pfaffian to have the same sign.

This will be the case when, for all M ∈ PM(n) such that M is a
perfect matching of G, ∏

(i,j)∈M

A′ij = sgn(M) · s,

for some s = ±1, which is the same for all M. If this holds, G′ is said
to be a Pfaffian orientation of G.

Ashley Montanaro
Counting perfect matchings in planar graphs Slide 12/25



Turning this idea into an algorithm

1. We produce a directed graph G′ from G by orienting each edge
of G in some direction.

2. This gives us a skew-symmetric adjacency matrix A′ (A′ij = 1 if
there is an edge i → j ; A′ij = −1 if there is an edge j → i).

3. We want Pf(A′) = ±PerfMatch(G), i.e. all the terms in the
Pfaffian to have the same sign.

This will be the case when, for all M ∈ PM(n) such that M is a
perfect matching of G, ∏

(i,j)∈M

A′ij = sgn(M) · s,

for some s = ±1, which is the same for all M. If this holds, G′ is said
to be a Pfaffian orientation of G.

Ashley Montanaro
Counting perfect matchings in planar graphs Slide 12/25



Example

G =
3 4

21

G′ =

1

3

2

4

A =


0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

 A′ =


0 1 1 0
−1 0 0 −1
−1 0 0 1
0 1 −1 0



I The two perfect matchings of G are {(1,2), (3,4)} and
{(1,3), (2,4)}.

I A′12A′34 = 1 = sgn((1,2,3,4)); A′13A′24 = −1 = sgn((1,3,2,4)).
I Therefore G′ is a Pfaffian orientation of G.
I It can be verified that det(A′) = 4 = Pf(A′)2.
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Finding Pfaffian orientations

Theorem (Kasteleyn, 1963)

Every planar graph has a Pfaffian orientation. Such an orientation
can be found in polynomial time.

The algorithm to do this uses an interpretation of planar graphs as a
mesh of faces. For example:

Each coloured component above is called a face of G.
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Faces and Pfaffian orientations
The algorithm is based on the following result.

Theorem (Kasteleyn, 1963)

Let G be a planar graph. Then (a) G can be oriented efficiently so
that each face has an odd number of lines oriented clockwise, and
(b) this is a Pfaffian orientation of G.

An example of such an orientation:
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Proving part (b) of Kasteleyn’s theorem
Part (b) is based on the following lemma (proof omitted).

Lemma
Let G be a graph and G′ be an orientation of G. Then G′ is a
Pfaffian orientation if every nice cycle in G is oddly oriented in G′.

I A nice cycle C is an even cycle such that, if C were removed, G
would still have a perfect matching.

I C is oddly oriented if there are an odd number of edges in C
going in each direction.
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Proving part (b) of Kasteleyn’s theorem
By the previous lemma, it suffices to show the following result.

Lemma
Let G be a planar graph. If G is oriented so that each face has an
odd number of lines oriented clockwise, then every nice cycle in G is
oddly oriented.

We will need the following version of Euler’s formula:

Euler’s formula
For any cycle C, e = v + f − 1, where e is the number of edges
inside C, v is the number of vertices inside C, and f is the number
of faces inside C.

(Proof: exercise.)
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oddly oriented.

We will need the following version of Euler’s formula:

Euler’s formula
For any cycle C, e = v + f − 1, where e is the number of edges
inside C, v is the number of vertices inside C, and f is the number
of faces inside C.

(Proof: exercise.)
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Proof of Lemma

I Let C be a nice cycle, let ci be the number of clockwise lines on
the boundary of face i in C, and c be the number of clockwise
lines on C.

I We oriented each face to have an odd number of clockwise
lines, so ci ≡ 1 mod 2, so f ≡

∑f
i=1 ci mod 2.

I But also
∑f

i=1 ci = c + e (each interior line is counted as
clockwise once).

I So f ≡ c + (v + f − 1) mod 2, so c ≡ (v − 1) mod 2.

I But v ≡ 0 mod 2, as C is a nice cycle.

I So C, and hence every nice cycle, is oddly oriented.
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Recap

We have shown that:

1. To count the number of perfect matchings in a graph G, it
suffices to find a Pfaffian orientation of G.

2. To find a Pfaffian orientation of a planar graph G, it suffices to
orient G so that each face has an odd number of lines oriented
clockwise.

Remaining step: An efficient algorithm to orient a planar graph so
that each face has an odd number of lines oriented clockwise.
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Finding a Pfaffian orientation

1. Find a spanning tree for G. Call this tree
T1.

2. Orient the edges contained in T1
arbitrarily.

3. Construct a second tree T2, whose
vertices are the faces of G. Put an edge
between faces that share an edge that’s
not in T1.

4. Starting with the leaves of T2, orient
these edges of G such that each face
has an odd number of lines oriented
clockwise.

We are left with a Pfaffian orientation of G.
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Back to chess boards (aka lattice graphs)

How many perfect matchings does this graph have?
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The number of perfect matchings on lattice graphs

I This graph has a high degree of symmetry, and this can be
used to calculate the Pfaffian exactly.

I For example, a 4× 4 lattice graph turns out to have 36 perfect
matchings, while an 8× 8 graph has 12,988,816.

I Asymptotically, an m × n graph has about (1.339)mn perfect
matchings.

I This result has applications to statistical physics and chemistry
– the number of perfect matchings of this graph tells us about
the energy of systems where molecules are arranged in a
lattice.
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Conclusion

I We can count the number of perfect matchings in planar
graphs, even though there can be exponentially many of them.

I This is despite the same problem being probably very hard for
general graphs.

I The proof brings together many different ideas and it’s almost
magical that it works.
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Further reading

I “Paths, trees and flowers” by Jack Edmonds (1965).

I “Pfaffian” on Wikipedia.

I “Matching theory”, book by Lovàsz and Plummer.

I “Dimer statistics and phase transitions”, P. W. Kasteleyn (1963).

I “Great algorithms” lecture notes by Richard Karp.
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Thanks and Merry Christmas!

Ashley Montanaro
Counting perfect matchings in planar graphs Slide 25/25




