Quantum search of partially ordered sets

Ashley Montanaro¹

¹Department of Computer Science
University of Bristol
Bristol, UK

13th March 2008
One of the most significant quantum algorithms developed so far is Grover’s algorithm for unstructured search [Grover ’97].
One of the most significant quantum algorithms developed so far is Grover’s algorithm for unstructured search [Grover ’97].
One of the most significant quantum algorithms developed so far is Grover’s algorithm for unstructured search [Grover ’97].

- Given an arbitrary non-zero function $f : [n] \mapsto \{0, 1\}$, Grover’s quantum algorithm finds an x such that $f(x) = 1$, with constant probability, using only $O(\sqrt{n})$ queries to f.

- Important extension to amplitude amplification: given a probabilistic algorithm A that succeeds with probability p, and the ability recognise a correct solution, can output a correct solution with probability $O(1)$ using only $O(1/\sqrt{p})$ uses of A [Brassard et al ’00].
Grover’s algorithm is already a useful primitive to speed up more complicated classical algorithms. For example, we can:

- Find the minimum element in a set of \(n \) integers in \(O(\sqrt{n}) \) time [Dürr, Høyer ’96],
- Find a collision in a \(2 \rightarrow 1 \) function \(f : [2n] \mapsto [n] \) in \(O(n^{1/3}) \) time [Brassard et al ’97],
- Find a spanning tree in an \(n \)-vertex graph in \(O(n^{3/2}) \) time (adjacency matrix model) [Dürr et al ’04],
- ...

All these applications work by finding a part of the problem in question that’s essentially unstructured, and running Grover search on this.
More structured search?

Could we speed up a search problem that has some kind of recursive structure?

(NB: already known that quantum search of an ordered n-element list requires $\Omega(\log n)$ time [Høyer et al '01])
Consider the problem of (classical) search of an abstract “database” D_n, parametrised by a problem size n, with the following characteristics:

- If $n \leq n_0$ for some constant n_0: can find the element in time $T(n) \leq t_0$, for some constant t_0.

Consider the problem of (classical) search of an abstract “database” D_n, parametrised by a problem size n, with the following characteristics:

- If $n \leq n_0$ for some constant n_0: can find the element in time $T(n) \leq t_0$, for some constant t_0.
- If $n > n_0$: the database can be divided into k sub-databases of size at most $\lceil n/k \rceil$, for some constant $k > 1$.

What is the time $T(n)$ to find an element in D_n?
More structured search?

Consider the problem of (classical) search of an abstract “database” D_n, parametrised by a problem size n, with the following characteristics:

- If $n \leq n_0$ for some constant n_0: can find the element in time $T(n) \leq t_0$, for some constant t_0.

- If $n > n_0$: the database can be divided into k sub-databases of size at most $\lceil n/k \rceil$, for some constant $k > 1$.

- If the element is in the original database, then it is in exactly one of these sub-databases.
More structured search?

Consider the problem of (classical) search of an abstract “database” D_n, parametrised by a problem size n, with the following characteristics:

- If $n \leq n_0$ for some constant n_0: can find the element in time $T(n) \leq t_0$, for some constant t_0.

- If $n > n_0$: the database can be divided into k sub-databases of size at most $\lceil n/k \rceil$, for some constant $k > 1$.

- If the element is in the original database, then it is in exactly one of these sub-databases.

- Each division into sub-databases uses time $f(n)$, where $f(n) = O(n^{1-\epsilon})$ for some $\epsilon > 0$.

What is the time $T(n)$ to find an element in D_n?
Recursive quantum search?

This is easy to solve by the recurrence

\[T(n) = k T(n/k) + O(n^{1-\epsilon}) \]
Recursive quantum search?

This is easy to solve by the recurrence

\[T(n) = k T(n/k) + O(n^{1-\epsilon}) = O(n) \]

We would like to find a quantum version of this recurrence. Can we get a speed-up by searching the sub-databases in quantum parallel?
Consider the problem of searching an abstract “database” D_n, parametrised by a problem size n, with the following characteristics:

- If $n \leq n_0$ for some constant n_0: can find the element in time $T(n) \leq t_0$, for some constant t_0.

The recursive quantum search theorem
Consider the problem of searching an abstract “database” D_n, parametrised by a problem size n, with the following characteristics:

- If $n \leq n_0$ for some constant n_0: can find the element in time $T(n) \leq t_0$, for some constant t_0.
- If $n > n_0$: the database can be divided into k sub-databases of size at most $\lceil n/k \rceil$, for some constant $k > 1$.
Consider the problem of searching an abstract “database” D_n, parametrised by a problem size n, with the following characteristics:

- If $n \leq n_0$ for some constant n_0: can find the element in time $T(n) \leq t_0$, for some constant t_0.
- If $n > n_0$: the database can be divided into k sub-databases of size at most $\lceil n/k \rceil$, for some constant $k > 1$.
- If the element is in the original database, then it is in exactly one of these sub-databases.

There is a quantum algorithm that finds an element in D_n with constant probability in time $T(n) = O(\sqrt{n})$.
Consider the problem of searching an abstract “database” D_n, parametrised by a problem size n, with the following characteristics:

- If $n \leq n_0$ for some constant n_0: can find the element in time $T(n) \leq t_0$, for some constant t_0.
- If $n > n_0$: the database can be divided into k sub-databases of size at most $\lceil n/k \rceil$, for some constant $k > 1$.
- If the element is in the original database, then it is in exactly one of these sub-databases.
- Each division into sub-databases uses time $f(n)$, where $f(n) = O(n^{1/2-\epsilon})$ for some $\epsilon > 0$.

Then there is a quantum algorithm that finds an element in D_n with constant probability in time $T(n) = O(\sqrt{n})$.

Finding the intersection of two sorted lists

Problem

Given monotone functions $f : [n] \mapsto \mathbb{Z}$, $g : [n] \mapsto \mathbb{Z}$, output a y such that $f(x) = g(x') = y$ for some x, x', if one exists.

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>4</th>
<th>4</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>
Problem

Given monotone functions $f : [n] \mapsto \mathbb{Z}, g : [n] \mapsto \mathbb{Z}$, output a y such that $f(x) = g(x') = y$ for some x, x', if one exists.

Obvious classical lower bound is $2n$ queries (have to read all the input in)

“Obvious” quantum algorithm uses $O(\sqrt{n \log n})$ queries

[Buhrman et al '05] gave an ingenious $O(\sqrt{nc \log^* n})$ algorithm

Lower bound is $\Omega(\sqrt{n})$ queries

We give an algorithm matching this lower bound.
A recursive classical algorithm

Idea: reduce the problem to searching in a 2d array sorted along rows and columns.

- Consider a notional $n \times n$ array T where $T(x, y) = f(x) - g(n + 1 - y)$.
- Then finding a zero in T finds a match in the two lists.

<table>
<thead>
<tr>
<th></th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-7</td>
<td>-6</td>
<td>-5</td>
<td>-5</td>
<td>-4</td>
<td>-3</td>
<td>-2</td>
</tr>
<tr>
<td>2</td>
<td>-6</td>
<td>-5</td>
<td>-4</td>
<td>-4</td>
<td>-3</td>
<td>-2</td>
<td>-1</td>
</tr>
<tr>
<td>4</td>
<td>-4</td>
<td>-3</td>
<td>-2</td>
<td>-2</td>
<td>-1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>-4</td>
<td>-3</td>
<td>-2</td>
<td>-2</td>
<td>-1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>
A recursive classical algorithm

Idea: write down an asymptotically optimal recursive classical algorithm for this task, then use the recursive quantum search theorem.

Given an $n \times n$ array A:

1. Perform binary search on the middle row/column of A.
2. After binary search, can eliminate two subarrays of A containing about half the elements in A.
3. We're left with two subarrays which might contain the target element: recurse on these subarrays.

Can show $T(n) \leq O(\log n) + 2T(n/2) = O(n)$. (a different optimal classical algorithm was already known [Linial, Saks '85], but seems harder to "make quantum")
A recursive classical algorithm

Idea: write down an asymptotically optimal recursive classical algorithm for this task, then use the recursive quantum search theorem.

Given an $n \times n$ array A:

1. Perform binary search on the middle row/column of A.
2. After binary search, can eliminate two subarrays of A containing about half the elements in A.
3. We’re left with two subarrays which might contain the target element: recurse on these subarrays.
A recursive classical algorithm

Idea: write down an asymptotically optimal recursive classical algorithm for this task, then use the recursive quantum search theorem.

Given an \(n \times n \) array \(A \):

1. Perform binary search on the middle row/column of \(A \).
2. After binary search, can eliminate two subarrays of \(A \) containing about half the elements in \(A \).
3. We’re left with two subarrays which might contain the target element: recurse on these subarrays.

Can show \(T(n) \leq O(\log n) + 2T(n/2) = O(n) \).

(a different optimal classical algorithm was already known [Linial, Saks ’85], but seems harder to “make quantum”)

Example

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>3</th>
<th>5</th>
<th>10</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>4</td>
<td>7</td>
<td>11</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>9</td>
<td>15</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>16</td>
<td>17</td>
<td>20</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>19</td>
<td>22</td>
<td>23</td>
<td>25</td>
<td></td>
</tr>
</tbody>
</table>

(green: integer to search for, yellow: not searched yet, blue: currently being searched, red: discarded)
<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>5</td>
<td>10</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>7</td>
<td>11</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>9</td>
<td>15</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>16</td>
<td>17</td>
<td>20</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>19</td>
<td>22</td>
<td>23</td>
<td>25</td>
<td></td>
</tr>
</tbody>
</table>

(green: integer to search for, yellow: not searched yet, blue: currently being searched, red: discarded)
(green: integer to search for, yellow: not searched yet, blue: currently being searched, red: discarded)
Applying the recursive quantum search theorem

Let’s check that we can apply the theorem.
Let’s check that we can apply the theorem.

- If $n \leq n_0$ for some constant n_0: can find the element in time $T(n) \leq t_0$, for some constant t_0. ✓
Let’s check that we can apply the theorem.

- If $n \leq n_0$ for some constant n_0: can find the element in time $T(n) \leq t_0$, for some constant t_0. ✓

- If $n > n_0$: the database can be divided into k sub-databases of size at most $\lceil n/k \rceil$, for some constant $k > 1$. ✓
Let’s check that we can apply the theorem.

- If $n \leq n_0$ for some constant n_0: can find the element in time $T(n) \leq t_0$, for some constant t_0. ✔

- If $n > n_0$: the database can be divided into k sub-databases of size at most $\lceil n/k \rceil$, for some constant $k > 1$. ✔

- Each division into sub-databases uses time $f(n)$, where $f(n) = O(n^{1/2-\epsilon})$ for some $\epsilon > 0$. ✔
Let’s check that we can apply the theorem.

- If $n \leq n_0$ for some constant n_0: can find the element in time $T(n) \leq t_0$, for some constant t_0. ✓

- If $n > n_0$: the database can be divided into k sub-databases of size at most $\lceil n/k \rceil$, for some constant $k > 1$. ✓

- Each division into sub-databases uses time $f(n)$, where $f(n) = O(n^{1/2-\epsilon})$ for some $\epsilon > 0$. ✓

- If the element is in the original database, then it is in exactly one of these sub-databases. ✗

We might have more than one zero in the array.
Problem: The recursive quantum search algorithm can only cope with at most one marked element.

Solution:

- Note that the zeroes only occur in rectangular blocks, with at most one block per row and column.
- If there’s only one such “zero block”, can modify the search algorithm to pretend that the block contains one element.
- If not, to reduce to the single-block case, repeatedly throw away random rows and columns over several rounds.
- Can show that with constant probability, one round will have only one zero block remaining.
- Can also show that the asymptotic query complexity isn’t hurt by doing this.
Proof idea of the recursive quantum search theorem

- **Idea:** perform the recursive search of the k sub-databases in quantum parallel.
- Want to end up with a recurrence like
 $$T(n) \leq O(n^{1/2-\epsilon}) + \sqrt{k} T(n/k) = O(\sqrt{n}).$$
- Immediate from amplitude amplification?
Proof idea of the recursive quantum search theorem

- **Idea:** perform the recursive search of the k sub-databases in quantum parallel.

- Want to end up with a recurrence like
 \[
 T(n) \leq O(n^{1/2-\epsilon}) + \sqrt{k} T(n/k) = O(\sqrt{n}).
 \]

- Immediate from amplitude amplification?

Not so fast!

- What happens if we perform l levels of recursion then use amplitude amplification on the resulting k^l sub-databases?

- Seems to give
 \[
 T(n) \leq k^l O(n^{1/2-\epsilon}) + O(k^{l/2}) T(n/k^l) = O(n^{1/2+c})
 \]
 for some constant c that turns up because of the hidden constant in the big-O notation.
Proof idea of the recursive quantum search theorem

- **Idea:** perform the recursive search of the k sub-databases in quantum parallel.
- Want to end up with a recurrence like $T(n) \leq O(n^{1/2-\epsilon}) + \sqrt{k} T(n/k) = O(\sqrt{n})$.
- Immediate from amplitude amplification?

Not so fast!
- What happens if we perform l levels of recursion then use amplitude amplification on the resulting k^l sub-databases?
- Seems to give $T(n) \leq k^l O(n^{1/2-\epsilon}) + O(k^{l/2}) T(n/k^l) = O(n^{1/2+c})$
 - for some constant c that turns up because of the hidden constant in the big-O notation

Moral: We have to be very careful about constants in this recursive algorithm!
A general recursive quantum search algorithm

- We extend a powerful result of [Aaronson and Ambainis ’05] on quantum search of spatial regions.

- Idea: it’s more efficient to do fewer iterations of amplitude amplification.
A general recursive quantum search algorithm

We extend a powerful result of [Aaronson and Ambainis ’05] on quantum search of spatial regions.

Idea: it’s more efficient to do fewer iterations of amplitude amplification

So our recursive algorithm performs “a small amount of” amplitude amplification on an algorithm that consists of:
- Divide the database into some number of sub-databases
- Pick one of these sub-databases at random
- Call yourself on that sub-database

Then it does “lots” of amplitude amplification at the end.

Importantly, can find **exact** bounds on the time required to achieve a certain success probability!
The quantum algorithm for finding an integer in a $n \times n$ array of distinct integers immediately extends to a d-dimensional $n \times n \times \cdots \times n$ array sorted in each dimension (complexity is $O(n^{(d-1)/2})$).

This is a special case of a more general problem: quantum search of partially ordered sets (posets).

One can show general upper and lower bounds for this task (summary: quantum computers can achieve at most a quadratic speed-up (approx) for any poset, and barely any speed-up at all for some posets).
We have outlined a general approach for achieving a quantum speed-up from recursive classical search algorithms.

This gives a quantum algorithm that finds the intersection of two sorted \(n \)-element lists in \(O(\sqrt{n}) \) time.

Future work?

- Extend the recursive quantum search theorem to finding multiple marked elements?
- Further applications? Finding problems where the speed-up is more dramatic?

Summary and further work

- We have outlined a general approach for achieving a quantum speed-up from recursive classical search algorithms.
- This gives a quantum algorithm that finds the intersection of two sorted n-element lists in $O(\sqrt{n})$ time.

Future work?

- Extend the recursive quantum search theorem to finding multiple marked elements?
- Further applications? Finding problems where the speed-up is more dramatic?

Summary and further work

- We have outlined a general approach for achieving a quantum speed-up from recursive classical search algorithms.
- This gives a quantum algorithm that finds the intersection of two sorted n-element lists in $O(\sqrt{n})$ time.

Future work?

- Extend the recursive quantum search theorem to finding multiple marked elements?
- Further applications? Finding problems where the speed-up is more dramatic?

Bristol Summer School on Probabilistic Techniques in Computer Science
6-11 July 2008

- Keynote speaker: Bela Bollobás.
- Topics include: randomised algorithms, communication complexity, concentration of measure, data stream algorithms, ...

http://www.cs.bris.ac.uk/probts08/