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Introduction

• Quantum walks are a new model for quantum com-
putation that have been used to produce novel quan-
tum algorithms (e.g. [3]) on undirected graphs.

• We consider the definition of quantum walks on
directed graphs.

•Question: Can quantum walks be meaningfully
defined on all directed graphs?

•Question: Can quantum walks outperform classi-
cal algorithms operating on directed graphs?

• Continuous-time quantum walks [2] cannot be de-
fined on directed graphs (as the graph’s adjacency
matrix must be Hermitian). So we only consider
discrete-time quantum walks.

Reversible & irreversible
graphs

A graph is a set of vertices and arcs. In an undirected
graph, for each arc a → b, there is a corresponding arc
b → a.

We say an arc a → b is reversible if there is a path
from b to a. A graph whose arcs are all reversible is
also called reversible; otherwise, it is called irreversible.

Some reversible graphs

Some irreversible graphs

In graph theoretic terms, every component of a re-
versible graph is strongly connected.

Examples of graph
classification

• All undirected graphs are reversible.

• Any graph containing a source or sink is irreversible.

• All regular graphs are reversible.

Quantum walks

Use a generalised notion of quantum walks [1].

Definition: A discrete-time quantum walk is the re-
peated application of a unitary operator W . Each use
of W is one step of the walk.

To define a quantum walk on a graph G, identify a
finite set of ≥ 1 basis states {|v1

i 〉, |v2
i 〉, ...} with each

vertex vi of the graph. A quantum walk can be imple-
mented on G if there exists a W such that, for all i
and j, vi → vj if and only if there exist k, l such that
〈vk

j |W |vl
i〉 6= 0.

This generalises the coined quantum walk where we use
a “vertex & coin” Hilbert spaceHv⊗Hc. Identify a ba-
sis state in Hv with each vertex of the graph, and iden-
tify a basis state in Hc with each “coin toss” outcome.
W is split into a coin toss and a shift: W = S(I ⊗C).

Main result

Theorem: A discrete-time quantum walk can be
defined on a finite graph G if and only if G is reversible.

Proof of necessity

We use the following lemma (from the Quantum Re-
currence Theorem [4])

Lemma: For any vector |a〉 in a finite-dimensional
Hilbert space, any unitary operator W , and any ε > 0,
there exists n ≥ 1 such that |〈a|W n|a〉| > 1− ε.

Then show the following:

Lemma: For any vectors |a〉, |b〉 in a finite-
dimensional Hilbert space, and for any unitary
operator W , if 〈b|W |a〉 6= 0, then there exists m ≥ 0
such that 〈a|Wm|b〉 6= 0.

Proof of sufficiency

Show that a coined quantum walk can be produced for
any reversible graph G, because every arc in a reversible
graph is included in at least one cycle.

To construct a coined quantum walk:

• Find a set S of cycles of G such that every arc in G
is included in at least one cycle.

• Use a coin with |S| different states, where each coin
state is associated with a shift along a different cycle
– a permutation of the vertices of G.

The Reachability problem

Problem: Given two vertices a, b in a graph
G, is there a path from a to b?

• For undirected graphs this problem is in L [5].

• However, for directed graphs, this problem is NL-
complete and thus expected to be harder.

• One classical solution is a random walk.

Question: Can we use a quantum walk algorithm
to solve Reachability more quickly for directed
graphs?

Answer: For reversible directed graphs, this problem
reduces to undirected reachability. This implies that
quantum walk algorithms might not be much help with
Reachability.

Conclusions
• Fully quantum walks that respect the structure of

their underlying graph can only be defined on re-
versible graphs.

• All reversible graphs admit the definition of a coined
quantum walk.

• We can produce a “partially quantum” walk on ir-
reversible graphs, which maintains some coherence,
using measurement.

• The Reachability problem is as easy for re-
versible graphs as it is for undirected graphs.

• Quantum walk algorithms for directed graphs may
not be simple generalisations of classical random
walk algorithms.

• Note that none of this considers the effect of modi-
fying the structure of the graph (e.g. changing irre-
versible arcs to reversible ones).

Walks with measurement

•Question: How can we define a quantum walk on
an irreversible graph G?

•Answer: By making use of the irreversible process
of measurement.

• Theorem: A “partially quantum” walk using mea-
surement can be defined on any directed graph.

• Define a reversible subgraph of a graph G to be a
subgraph of G which, if considered as a graph itself,
is reversible.

Construction of a quantum walk with
measurement

1. Partition G into n reversible subgraphs, possibly
connected to other subgraphs by irreversible arcs.
For each irreversible arc leaving a subgraph, add an
arc in the opposite direction.
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Dividing an irreversible graph into reversible
subgraphs

2. Define n standard coined quantum walks {Wi}: one
walk on each reversible subgraph.

3. Define an incomplete measurement M that has n
outcomes and projects onto the partition into sub-
graphs.

Execution of a walk with
measurement

Repeat the following two steps:

1. Measure M to determine which reversible subgraph
the walker is in.

2. If we see outcome i from the measurement, perform
unitary walk operation Wi.

This approach has the advantage that coherence can
be maintained when walking in a reversible subgraph,
or when moving from one to another. However, it is
not possible to maintain coherence across different sub-
graphs.

The more irreversible arcs in the graph, the more “clas-
sically” the quantum walk will behave.
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