

Abstract

- We present several families of total boolean functions which have exact quantum query complexity which is a constant multiple (between 1/2 and 2/3) of their classical query complexity, and show that optimal quantum algorithms for these functions cannot be obtained by simply computing parities of pairs of bits.
- These results were originally inspired by numerically solving the semidefinite programs characterising quantum query complexity for small problem SİZƏS.
- We include numerical results giving the optimal success probabilities achievable by quantum algorithms computing all boolean functions on up to 4 bits, and all symmetric boolean functions on up to 6 bits.
- We also characterise the model of nonadaptive exact quantum query complexity in terms of coding theory and completely characterise the query complexity of symmetric boolean functions in this context.

Exact quantum query complexity

Let $f: \{0,1\}^n \rightarrow \{0,1\}$ be a boolean function.

- Define D(f) ($Q_E(f)$) as the minimum number of classical (quantum) queries required to compute f with certainty.
- It was shown by Midrijanis [4] that for total functions $f, D(f) = O(Q_E(f)^3).$
- On the other hand, exact quantum algorithms can indeed be better than classical algorithms: Cleve et al [2] showed that the parity of n bits,

$$f(x) = x_1 \oplus x_2 \oplus \cdots \oplus x_n$$

can be computed exactly using only $\lceil n/2 \rceil$ quantum queries, simply by computing the parity of 2 bits using 1 quantum query.

- Some authors have used the algorithm for parity as a subroutine, e.g. [3] uses it to compute the majority function using $n - O(\log n)$ queries.
- But to our knowledge there are no other (non-trivial) exact quantum query algorithms for total functions known! It has been open for 14+ years whether there exists a total function f such that $Q_E(f) < D(f)/2$.

Exact quantum query algorithms

Centre for Quantum Information and Foundations, University of Cambridge

Quantum query complexity SDP

Given $f: \{0,1\}^n \rightarrow \{0,1\}$ and $t \in \mathbb{N}$, find a sequence of 2^n -dim real symmetric matrices $(M_i^{(j)})$, where $0 \le i \le n$ and $0 \le j \le t - 1$, and 2^n -dim real symmetric matrices Γ_0 , Γ_1 , such that

$$\sum_{i=0}^{n} M_{i}^{(0)} = E_{0}$$

$$\sum_{i=0}^{n} M_{i}^{(j)} = \sum_{i=0}^{n} E_{i} \circ M_{i}^{(j-1)} \text{ (for } 1 \le j \le t-1 \text{)}$$

$$\Gamma_{0} + \Gamma_{1} = \sum_{i=0}^{n} E_{i} \circ M_{i}^{(t-1)}$$

$$F_{0} \circ \Gamma_{0} \ge (1-\epsilon)F_{0}, \quad F_{1} \circ \Gamma_{1} \ge (1-\epsilon)F_{1}.$$

Here E_i is the matrix $\langle x | E_i | y \rangle = (-1)^{x_i + y_i}$, F_0 and F_1 are diagonal 0/1 matrices where $\langle x | F_z | x \rangle = 1$ if and only if f(x) = z, and \circ is the Hadamard (entrywise) product of matrices.

Theorem (Barnum, Saks and Szegedy [1]). *There is a* quantum query algorithm that uses t queries to compute a function $f: \{0,1\}^n \rightarrow \{0,1\}$ within error ϵ if and only if the above SDP is feasible. Further, given a so*lution to the above SDP, one can write down an explicit* quantum algorithm achieving the same parameters.

Exact quantum query algorithms

- Using the CVX package for Matlab, we solved the Barnum-Saks-Szegedy SDP numerically for all boolean functions up to 4 bits, and all symmetric functions on up to 6 bits.
- Based on the (inexact) output of the SDP solver, one can try to find an exact quantum algorithm achieving the same parameters.
- We have done this for the functions $x_1 \wedge (x_2 \vee x_3)$, EXACT₂ and $(x_1 \wedge x_2) \vee (\bar{x_1} \wedge \bar{x_2} \wedge x_3)$, for all of which the optimal quantum algorithm is provably not based on computing parities.
- We also have a simpler exact quantum algorithm which solves EXACT₂ on 4 bits using 2 queries. This algorithm generalises to a 2-query algorithm for determining whether the Hamming weight of the input is n/2 or in the set $\{0, 1, n-1, n\}$.
- These separations scale up to give constant factor quantum-classical query separations.

For example, we have the following results for all boolean functions depending on 3 input bits, up to isomorphism.

ID	Function	1 query	2 queries	\mathbb{F}_2 deg.	D(f)
1	$x_1 \wedge x_2 \wedge x_3$	0.800	0.980	3	3
6	$x_1 \wedge (x_2 \oplus x_3)$	0.667	1	2	3
7	$x_1 \wedge (x_2 \vee x_3)$	0.773	1	3	3
22	$EXACT_2$	0.571	1	3	3
23	MAJ	0.667	1	2	3
30	$x_1 \oplus (x_2 \lor x_3)$	0.667	1	2	3
53	$SEL(x_1, x_2, x_3)$	0.854	1	2	2
67	see below	0.773	1	3	3
105	PARITY	0.500	1	1	3
126	NAE	0.900	1	2	3

In this table:

Theorem. For any function $f : \{0, 1\}^n \rightarrow \{0, 1\}$, $Q_E^{na}(f) = \min_{x \in \{0,1\}^n} \max_{y \in S_f^{\perp}} d(x, y).$

Ashley Montanaro, Richard Jozsa and Graeme Mitchison

Numerical results for small functions

• The ID of each function is the integer obtained by converting its truth table from binary.

• Columns give the optimal success probability that can be achieved by quantum algorithms making 1 or 2 queries.

• Function 67 is $(x_1 \wedge x_2) \vee (\bar{x_1} \wedge \bar{x_2} \wedge x_3)$.

Nonadaptive quantum query complexity

• A nonadaptive (classical or quantum) query algorithm cannot choose queries based on the result of previous queries. In other words, the queries must all be made up front, in parallel.

• Let $D^{na}(f)$, $Q_{E}^{na}(f)$ be the nonadaptive classical and quantum exact query complexities of f.

For any total boolean function f depending on n variables, $D^{na}(f) = n$. Nonadaptive quantum query complexity is more complicated.

• For any $f: \{0,1\}^n \rightarrow \{0,1\}$, define the subspace $S_f := \{z : \forall x, f(x) = f(x+z)\}.$

• For any subspace $S \subseteq \{0,1\}^n$, let S^{\perp} denote the orthogonal subspace to S, i.e.

 $S^{\perp} = \{ x : x \cdot s = 0, \forall s \in S \}.$

Corollary. If $f : \{0,1\}^n \rightarrow \{0,1\}$ is symmetric, then exactly one of the following four possibilities is true.

1. f is constant and $Q_E^{na}(f) = 0$.

 $Q_E^{na}(f) = \lceil n/2 \rceil$.

4. f is none of the above and $Q_E^{na}(f) = n$.

As always, the basic open question still remains: can we achieve $Q_E(f) < D(f)/2?$ Our numerical results inspire many other tantalising conjectures. For example:

Conjecture. For any n, the EXACT_k function on n bits can be computed exactly using $\max\{k, n-k\}$ quantum queries.

This conjecture holds numerically for $n \leq 6$.

[1] H. Barnum, M. Saks, and M. Szegedy. Quantum query complexity and semi-definite programming. In *Proc. 18th CCC*, pages 179–193, 2003.

[2] R. Cleve, A. Ekert, C. Macchiavello, and M. Mosca. Quantum algorithms revisited. Proc. R. Soc. Lond. A, 454(1969):339-354, 1998. quant-ph/ 9708016.

[3] T. Hayes, S. Kutin, and D. van Melkebeek. The quantum black-box complexity of majority. Algorithmica, 34(4):480–501, 2002. quant-ph/ 0109101.

[4] G. Midrijānis. Exact quantum query complexity for total Boolean functions, 2004. quant-ph/ 0403168.

This allows us to prove the following quadrichotomy for symmetric boolean functions.

2. f is the PARITY function or its negation and

3. f satisfies $f(x) = f(\bar{x})$ (but is not constant, the PAR-ITY function or its negation) and $Q_E^{na}(f) = n - 1$.

Open questions

References

arXiv:1111.0475