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Abstract

•We present several families of total boolean func-
tions which have exact quantum query complexity
which is a constant multiple (between 1/2 and 2/3)
of their classical query complexity, and show that op-
timal quantum algorithms for these functions cannot
be obtained by simply computing parities of pairs of
bits.

•These results were originally inspired by numeri-
cally solving the semidefinite programs character-
ising quantum query complexity for small problem
sizes.

•We include numerical results giving the optimal suc-
cess probabilities achievable by quantum algorithms
computing all boolean functions on up to 4 bits, and
all symmetric boolean functions on up to 6 bits.

•We also characterise the model of nonadaptive exact
quantum query complexity in terms of coding theory
and completely characterise the query complexity of
symmetric boolean functions in this context.

Exact quantum query complexity

Let f : {0, 1}n→ {0, 1} be a boolean function.

•Define D(f ) (QE(f )) as the minimum number of clas-
sical (quantum) queries required to compute f with
certainty.

• It was shown by Midrijanis [4] that for total functions
f , D(f ) = O(QE(f )3).

•On the other hand, exact quantum algorithms can
indeed be better than classical algorithms: Cleve et
al [2] showed that the parity of n bits,

f (x) = x1 ⊕ x2 ⊕ · · · ⊕ xn
can be computed exactly using only dn/2e quantum
queries, simply by computing the parity of 2 bits us-
ing 1 quantum query.

•Some authors have used the algorithm for parity as
a subroutine, e.g. [3] uses it to compute the majority
function using n−O(log n) queries.

•But to our knowledge there are no other (non-trivial)
exact quantum query algorithms for total functions
known! It has been open for 14+ years whether there
exists a total function f such that QE(f ) < D(f )/2.

Quantum query complexity SDP

Given f : {0, 1}n→ {0, 1} and t ∈ N, find a sequence of
2n-dim real symmetric matrices (M

(j)
i ), where 0 ≤ i ≤ n

and 0 ≤ j ≤ t− 1, and 2n-dim real symmetric matrices
Γ0, Γ1, such that

n∑
i=0

M
(0)
i = E0

n∑
i=0

M
(j)
i =

n∑
i=0

Ei ◦M (j−1)
i (for 1 ≤ j ≤ t− 1)

Γ0 + Γ1 =

n∑
i=0

Ei ◦M (t−1)
i

F0 ◦ Γ0 ≥ (1− ε)F0, F1 ◦ Γ1 ≥ (1− ε)F1.

Here Ei is the matrix 〈x|Ei|y〉 = (−1)xi+yi, F0 and F1 are
diagonal 0/1 matrices where 〈x|Fz|x〉 = 1 if and only if
f (x) = z, and ◦ is the Hadamard (entrywise) product
of matrices.
Theorem (Barnum, Saks and Szegedy [1]). There is a
quantum query algorithm that uses t queries to com-
pute a function f : {0, 1}n → {0, 1} within error ε if and
only if the above SDP is feasible. Further, given a so-
lution to the above SDP, one can write down an explicit
quantum algorithm achieving the same parameters.

Exact quantum query algorithms

•Using the CVX package for Matlab, we solved
the Barnum-Saks-Szegedy SDP numerically for all
boolean functions up to 4 bits, and all symmetric
functions on up to 6 bits.

•Based on the (inexact) output of the SDP solver, one
can try to find an exact quantum algorithm achieving
the same parameters.

•We have done this for the functions x1 ∧ (x2 ∨ x3),
EXACT2 and (x1 ∧ x2) ∨ (x̄1 ∧ x̄2 ∧ x3), for all of which
the optimal quantum algorithm is provably not based
on computing parities.

•We also have a simpler exact quantum algorithm
which solves EXACT2 on 4 bits using 2 queries. This
algorithm generalises to a 2-query algorithm for de-
termining whether the Hamming weight of the input
is n/2 or in the set {0, 1, n− 1, n}.

•These separations scale up to give constant factor
quantum-classical query separations.

Numerical results for small functions

For example, we have the following results for all
boolean functions depending on 3 input bits, up to iso-
morphism.

ID Function 1 query 2 queries F2 deg. D(f)
1 x1 ∧ x2 ∧ x3 0.800 0.980 3 3
6 x1 ∧ (x2 ⊕ x3) 0.667 1 2 3
7 x1 ∧ (x2 ∨ x3) 0.773 1 3 3
22 EXACT2 0.571 1 3 3
23 MAJ 0.667 1 2 3
30 x1 ⊕ (x2 ∨ x3) 0.667 1 2 3
53 SEL(x1, x2, x3) 0.854 1 2 2
67 see below 0.773 1 3 3
105 PARITY 0.500 1 1 3
126 NAE 0.900 1 2 3

In this table:
•The ID of each function is the integer obtained by

converting its truth table from binary.

•Columns give the optimal success probability that
can be achieved by quantum algorithms making 1
or 2 queries.

•Function 67 is (x1 ∧ x2) ∨ (x̄1 ∧ x̄2 ∧ x3).

Nonadaptive quantum query complexity

•A nonadaptive (classical or quantum) query algo-
rithm cannot choose queries based on the result of
previous queries. In other words, the queries must
all be made up front, in parallel.

• Let Dna(f ), Qna
E (f ) be the nonadaptive classical and

quantum exact query complexities of f .

For any total boolean function f depending on n vari-
ables, Dna(f ) = n. Nonadaptive quantum query com-
plexity is more complicated.

•For any f : {0, 1}n→ {0, 1}, define the subspace

Sf := {z : ∀x, f (x) = f (x + z)}.
•For any subspace S ⊆ {0, 1}n, let S⊥ denote the or-

thogonal subspace to S, i.e.

S⊥ = {x : x · s = 0,∀ s ∈ S}.

Theorem. For any function f : {0, 1}n→ {0, 1},
Qna
E (f ) = min

x∈{0,1}n
max
y∈S⊥f

d(x, y).

This allows us to prove the following quadrichotomy for
symmetric boolean functions.

Corollary. If f : {0, 1}n → {0, 1} is symmetric, then ex-
actly one of the following four possibilities is true.

1. f is constant and Qna
E (f ) = 0.

2. f is the PARITY function or its negation and
Qna
E (f ) = dn/2e.

3. f satisfies f (x) = f (x̄) (but is not constant, the PAR-
ITY function or its negation) and Qna

E (f ) = n− 1.

4. f is none of the above and Qna
E (f ) = n.

Open questions

As always, the basic open question still remains: can
we achieve QE(f ) < D(f )/2? Our numerical results in-
spire many other tantalising conjectures. For example:

Conjecture. For any n, the EXACTk function on n bits
can be computed exactly using max{k, n−k} quantum
queries.

This conjecture holds numerically for n ≤ 6.
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