
The quantum threat to cryptography

Ashley Montanaro

School of Mathematics,
University of Bristol

20 October 2016

Quantum computers

University of Bristol UCSB / Google

IBM University of Oxford

Experimental progress

Important aspects of a quantum computer are:

The number of qubits (quantum bits) it has;
The number of quantum gates (elementary operations) it
can execute, and the speed with which it does so;
Whether it is fault-tolerant and scalable.

Current experiments have 5-10 qubits, can implement a few
hundred gates, and are not fault-tolerant.

For practical (e.g. crypto) applications, we would need
100-10,000+ fault-tolerant qubits and to perform 108-1012 gates.

Estimates for when this will be achieved vary, but only a
pessimist would bet $1M on it taking >20 years. . .

Experimental progress

Important aspects of a quantum computer are:

The number of qubits (quantum bits) it has;
The number of quantum gates (elementary operations) it
can execute, and the speed with which it does so;
Whether it is fault-tolerant and scalable.

Current experiments have 5-10 qubits, can implement a few
hundred gates, and are not fault-tolerant.

For practical (e.g. crypto) applications, we would need
100-10,000+ fault-tolerant qubits and to perform 108-1012 gates.

Estimates for when this will be achieved vary, but only a
pessimist would bet $1M on it taking >20 years. . .

Experimental progress

Important aspects of a quantum computer are:

The number of qubits (quantum bits) it has;
The number of quantum gates (elementary operations) it
can execute, and the speed with which it does so;
Whether it is fault-tolerant and scalable.

Current experiments have 5-10 qubits, can implement a few
hundred gates, and are not fault-tolerant.

For practical (e.g. crypto) applications, we would need
100-10,000+ fault-tolerant qubits and to perform 108-1012 gates.

Estimates for when this will be achieved vary, but only a
pessimist would bet $1M on it taking >20 years. . .

Experimental progress

Important aspects of a quantum computer are:

The number of qubits (quantum bits) it has;
The number of quantum gates (elementary operations) it
can execute, and the speed with which it does so;
Whether it is fault-tolerant and scalable.

Current experiments have 5-10 qubits, can implement a few
hundred gates, and are not fault-tolerant.

For practical (e.g. crypto) applications, we would need
100-10,000+ fault-tolerant qubits and to perform 108-1012 gates.

Estimates for when this will be achieved vary, but only a
pessimist would bet $1M on it taking >20 years. . .

Introduction

One of the important applications of quantum computers is
expected to be attacking cryptosystems that are designed to be
secure against classical adversaries.

The rest of this talk:
1 Efficient quantum attacks on public-key cryptosystems;
2 General-purpose quantum algorithms and applications to

cryptographic tasks.

Integer factorisation

Problem
Given an n-digit integer N = p× q for primes p and q,
determine p and q.

The best (classical!) algorithm we have for factorisation
(the number field sieve) runs in time

exp(O(n1/3(log n)2/3))

The RSA cryptosystem is based around the hardness of
this task. If we can factorise large integers efficiently, we
can break RSA.

Theorem [Shor ’97]

There is a quantum algorithm which finds the prime factors of
an n-digit integer in time O(n3).

Integer factorisation

Problem
Given an n-digit integer N = p× q for primes p and q,
determine p and q.

The best (classical!) algorithm we have for factorisation
(the number field sieve) runs in time

exp(O(n1/3(log n)2/3))

The RSA cryptosystem is based around the hardness of
this task. If we can factorise large integers efficiently, we
can break RSA.

Theorem [Shor ’97]

There is a quantum algorithm which finds the prime factors of
an n-digit integer in time O(n3).

Integer factorisation

Problem
Given an n-digit integer N = p× q for primes p and q,
determine p and q.

The best (classical!) algorithm we have for factorisation
(the number field sieve) runs in time

exp(O(n1/3(log n)2/3))

The RSA cryptosystem is based around the hardness of
this task. If we can factorise large integers efficiently, we
can break RSA.

Theorem [Shor ’97]

There is a quantum algorithm which finds the prime factors of
an n-digit integer in time O(n3).

Integer factorisation

Problem
Given an n-digit integer N = p× q for primes p and q,
determine p and q.

The best (classical!) algorithm we have for factorisation
(the number field sieve) runs in time

exp(O(n1/3(log n)2/3))

The RSA cryptosystem is based around the hardness of
this task. If we can factorise large integers efficiently, we
can break RSA.

Theorem [Shor ’97]

There is a quantum algorithm which finds the prime factors of
an n-digit integer in time O(n3).

Shor’s algorithm: complexity comparison

Very roughly (ignoring constant factors!):

Number of digits Timesteps (quantum) Timesteps (classical)
100 106 ∼ 4× 105

1,000 109 ∼ 5× 1015

10,000 1012 ∼ 1× 1041

Based on these figures, a 10,000-digit number could be
factorised by:

A quantum computer with a clock speed of 1MHz in 11
days.

The fastest computer on the Top500 supercomputer list
(∼ 9.3× 1016 operations per second) in ∼ 3.4× 1016 years.

(see e.g. [Van Meter et al ’05] for a more detailed comparison)

Shor’s algorithm: complexity comparison

Very roughly (ignoring constant factors!):

Number of digits Timesteps (quantum) Timesteps (classical)
100 106 ∼ 4× 105

1,000 109 ∼ 5× 1015

10,000 1012 ∼ 1× 1041

Based on these figures, a 10,000-digit number could be
factorised by:

A quantum computer with a clock speed of 1MHz in 11
days.

The fastest computer on the Top500 supercomputer list
(∼ 9.3× 1016 operations per second) in ∼ 3.4× 1016 years.

(see e.g. [Van Meter et al ’05] for a more detailed comparison)

Shor’s algorithm: complexity comparison

Very roughly (ignoring constant factors!):

Number of digits Timesteps (quantum) Timesteps (classical)
100 106 ∼ 4× 105

1,000 109 ∼ 5× 1015

10,000 1012 ∼ 1× 1041

Based on these figures, a 10,000-digit number could be
factorised by:

A quantum computer with a clock speed of 1MHz in 11
days.

The fastest computer on the Top500 supercomputer list
(∼ 9.3× 1016 operations per second) in ∼ 3.4× 1016 years.

(see e.g. [Van Meter et al ’05] for a more detailed comparison)

But a cautionary note. . .

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

·108

500

1,000

1,500

2,000

2,500

3,000

512

768

1,024

2,048

3,072

number of gates per second

si
ze

of
n
u
m

b
er

th
at

ca
n

b
e

fa
ct

o
ri

se
d

Figure 58: The relation between speed of a quantum computer and the size of number that
can be factorised in 1 day

47

Pic: Nicharee Techatanerut, 2014

Hidden subgroup problems

Hidden subgroup problem (e.g. [Boneh and Lipton ’95])
Let G be a group. Given oracle access to a function f : G→ X
such that f is constant on the cosets of some subgroup H 6 G,
and distinct on each coset, identify H.

Integer factorisation reduces to the case G = ZM for some
integer M. This is the problem of determining the period of a
periodic function:

On a quantum computer, the HSP can be solved using
O(log |G|) queries to f for all groups G [Ettinger et al. ’04].
Classically, some groups require Ω(

√
|G|) queries [Simon ’97].

Hidden subgroup problems

Hidden subgroup problem (e.g. [Boneh and Lipton ’95])
Let G be a group. Given oracle access to a function f : G→ X
such that f is constant on the cosets of some subgroup H 6 G,
and distinct on each coset, identify H.

Integer factorisation reduces to the case G = ZM for some
integer M. This is the problem of determining the period of a
periodic function:

On a quantum computer, the HSP can be solved using
O(log |G|) queries to f for all groups G [Ettinger et al. ’04].
Classically, some groups require Ω(

√
|G|) queries [Simon ’97].

Hidden subgroup problems

Hidden subgroup problem (e.g. [Boneh and Lipton ’95])
Let G be a group. Given oracle access to a function f : G→ X
such that f is constant on the cosets of some subgroup H 6 G,
and distinct on each coset, identify H.

Integer factorisation reduces to the case G = ZM for some
integer M. This is the problem of determining the period of a
periodic function:

On a quantum computer, the HSP can be solved using
O(log |G|) queries to f for all groups G [Ettinger et al. ’04].
Classically, some groups require Ω(

√
|G|) queries [Simon ’97].

Hidden subgroup problems

The HSP is related to many other problems and cryptosystems:

Problem Group Complexity Cryptosystem
Factorisation ZN Polynomial1 RSA
Discrete log Zp−1 × Zp−1 Polynomial1 Diffie-Hellman, DSA, . . .
Elliptic curve d. log Elliptic curve Polynomial2 ECDH, ECDSA, . . .
Principal ideal R Polynomial3 Buchmann-Williams
Principal ideal Rm Polynomial4 Smart-Vercauteren, . . .
Shortest lattice vector Dihedral grp Subexp.5 NTRU, Ajtai-Dwork, . . .
Graph isomorphism Symmetric grp Exponential −

1Shor ’97, 2Proos et al. ’03, 3Hallgren ’07, 4Eisenträger et al. ’14, Biasse and
Song ’15, 5Kuperberg ’05, Regev ’04

A significant amount of other work on the HSP has resolved
its complexity for many other groups.

Hidden subgroup problems

The HSP is related to many other problems and cryptosystems:

Problem Group Complexity Cryptosystem
Factorisation ZN Polynomial1 RSA
Discrete log Zp−1 × Zp−1 Polynomial1 Diffie-Hellman, DSA, . . .
Elliptic curve d. log Elliptic curve Polynomial2 ECDH, ECDSA, . . .
Principal ideal R Polynomial3 Buchmann-Williams
Principal ideal Rm Polynomial4 Smart-Vercauteren, . . .
Shortest lattice vector Dihedral grp Subexp.5 NTRU, Ajtai-Dwork, . . .
Graph isomorphism Symmetric grp Exponential −

1Shor ’97, 2Proos et al. ’03, 3Hallgren ’07, 4Eisenträger et al. ’14, Biasse and
Song ’15, 5Kuperberg ’05, Regev ’04

A significant amount of other work on the HSP has resolved
its complexity for many other groups.

Other cryptosystems?

As RSA is insecure against quantum attack, can we switch to
something else?

The field of post-quantum cryptography tries to develop
cryptosystems which are secure against quantum attack.

May 2006: first conference on post-quantum crypto held.

2014-2016: post-quantum crypto companies emerge: e.g.
Post-Quantum, ISARA, . . . ?

Aug 2015: NSA states that “we anticipate a need to shift
to quantum-resistant cryptography in the near future”

July 2016: Google announces that a candidate
post-quantum cryptosystem (“New Hope”) has been
implemented as an experiment in Chrome.

Other cryptosystems?

As RSA is insecure against quantum attack, can we switch to
something else?

The field of post-quantum cryptography tries to develop
cryptosystems which are secure against quantum attack.

May 2006: first conference on post-quantum crypto held.

2014-2016: post-quantum crypto companies emerge: e.g.
Post-Quantum, ISARA, . . . ?

Aug 2015: NSA states that “we anticipate a need to shift
to quantum-resistant cryptography in the near future”

July 2016: Google announces that a candidate
post-quantum cryptosystem (“New Hope”) has been
implemented as an experiment in Chrome.

Other cryptosystems?

As RSA is insecure against quantum attack, can we switch to
something else?

The field of post-quantum cryptography tries to develop
cryptosystems which are secure against quantum attack.

May 2006: first conference on post-quantum crypto held.

2014-2016: post-quantum crypto companies emerge: e.g.
Post-Quantum, ISARA, . . . ?

Aug 2015: NSA states that “we anticipate a need to shift
to quantum-resistant cryptography in the near future”

July 2016: Google announces that a candidate
post-quantum cryptosystem (“New Hope”) has been
implemented as an experiment in Chrome.

“Post-quantum” cryptosystems

Some examples of cryptosystems which have thus far resisted
quantum attack:

The McEliece cryptosystem, which is (roughly) based on
the hardness of finding transformations between
equivalent linear codes.

There can be no efficient quantum attack on this
cryptosystem based on simple Fourier sampling (the key
ingredient in Shor’s algorithm) [Dinh et al ’10].

Lattice-based cryptosystems dependent on the hardness
of solving closest/shortest vector problems in lattices.

No polynomial-time quantum algorithm for these
problems has been found for general lattices (but there is
an efficient algorithm for lattices with more structure [e.g.
Campbell et al. ’14, Biasse and Song ’15]).

“Post-quantum” cryptosystems

Some examples of cryptosystems which have thus far resisted
quantum attack:

The McEliece cryptosystem, which is (roughly) based on
the hardness of finding transformations between
equivalent linear codes.

There can be no efficient quantum attack on this
cryptosystem based on simple Fourier sampling (the key
ingredient in Shor’s algorithm) [Dinh et al ’10].

Lattice-based cryptosystems dependent on the hardness
of solving closest/shortest vector problems in lattices.

No polynomial-time quantum algorithm for these
problems has been found for general lattices (but there is
an efficient algorithm for lattices with more structure [e.g.
Campbell et al. ’14, Biasse and Song ’15]).

“Post-quantum” cryptosystems

Some examples of cryptosystems which have thus far resisted
quantum attack:

The McEliece cryptosystem, which is (roughly) based on
the hardness of finding transformations between
equivalent linear codes.

There can be no efficient quantum attack on this
cryptosystem based on simple Fourier sampling (the key
ingredient in Shor’s algorithm) [Dinh et al ’10].

Lattice-based cryptosystems dependent on the hardness
of solving closest/shortest vector problems in lattices.

No polynomial-time quantum algorithm for these
problems has been found for general lattices (but there is
an efficient algorithm for lattices with more structure [e.g.
Campbell et al. ’14, Biasse and Song ’15]).

“Post-quantum” cryptosystems

Some examples of cryptosystems which have thus far resisted
quantum attack:

The McEliece cryptosystem, which is (roughly) based on
the hardness of finding transformations between
equivalent linear codes.

There can be no efficient quantum attack on this
cryptosystem based on simple Fourier sampling (the key
ingredient in Shor’s algorithm) [Dinh et al ’10].

Lattice-based cryptosystems dependent on the hardness
of solving closest/shortest vector problems in lattices.

No polynomial-time quantum algorithm for these
problems has been found for general lattices (but there is
an efficient algorithm for lattices with more structure [e.g.
Campbell et al. ’14, Biasse and Song ’15]).

Grover’s algorithm

One of the most basic problems in computer science is
unstructured search.

Imagine we have access to a function f : {0, 1}n → {0, 1}
which we treat as a black box.

We want to find an x such that f (x) = 1.

0 0 1 0 0 0 1 0

On a classical computer, this task could require 2n queries
to f in the worst case. But on a quantum computer,
Grover’s algorithm [Grover ’97] can solve the problem with
O(
√

2n) queries to f (and bounded failure probability).

Grover’s algorithm

One of the most basic problems in computer science is
unstructured search.

Imagine we have access to a function f : {0, 1}n → {0, 1}
which we treat as a black box.

We want to find an x such that f (x) = 1.

0 0 1 0 0 0 1 0

On a classical computer, this task could require 2n queries
to f in the worst case. But on a quantum computer,
Grover’s algorithm [Grover ’97] can solve the problem with
O(
√

2n) queries to f (and bounded failure probability).

Grover’s algorithm

One of the most basic problems in computer science is
unstructured search.

Imagine we have access to a function f : {0, 1}n → {0, 1}
which we treat as a black box.

We want to find an x such that f (x) = 1.

0 0 1 0 0 0 1 0

On a classical computer, this task could require 2n queries
to f in the worst case. But on a quantum computer,
Grover’s algorithm [Grover ’97] can solve the problem with
O(
√

2n) queries to f (and bounded failure probability).

Grover’s algorithm

One of the most basic problems in computer science is
unstructured search.

Imagine we have access to a function f : {0, 1}n → {0, 1}
which we treat as a black box.

We want to find an x such that f (x) = 1.

0 0 1 0 0 0 1 0

On a classical computer, this task could require 2n queries
to f in the worst case. But on a quantum computer,
Grover’s algorithm [Grover ’97] can solve the problem with
O(
√

2n) queries to f (and bounded failure probability).

Applications of Grover’s algorithm

Grover’s algorithm gives a speedup over naı̈ve algorithms for
any decision problem in the complexity class NP, i.e. where
we can verify the solution efficiently.

For example, in the Circuit SAT problem we would like to
find an input to a circuit on n bits such that the output is
1:

AND

OR

NOT AND

1
1

0 1

Grover’s algorithm improves the runtime from O(2n) to
O(2n/2 poly(n)): applications to design automation, circuit
equivalence, model checking, . . .

Applications of Grover’s algorithm

Grover’s algorithm gives a speedup over naı̈ve algorithms for
any decision problem in the complexity class NP, i.e. where
we can verify the solution efficiently.

For example, in the Circuit SAT problem we would like to
find an input to a circuit on n bits such that the output is
1:

AND

OR

NOT AND

1
1

0 1

Grover’s algorithm improves the runtime from O(2n) to
O(2n/2 poly(n)): applications to design automation, circuit
equivalence, model checking, . . .

Applications of Grover’s algorithm

Grover’s algorithm gives a speedup over naı̈ve algorithms for
any decision problem in the complexity class NP, i.e. where
we can verify the solution efficiently.

For example, in the Circuit SAT problem we would like to
find an input to a circuit on n bits such that the output is
1:

AND

OR

NOT AND

1
1

0 1

Grover’s algorithm improves the runtime from O(2n) to
O(2n/2 poly(n)): applications to design automation, circuit
equivalence, model checking, . . .

Quadratic speedup

Is a quadratic speedup significant?

A concrete example: Circuit SAT with different clock speeds.

Classical Quantum
Input bits 1MHz 1GHz 1KHz 10KHz 1MHz

30 18s 1s 32s 3s 0.03s
40 13d 18m 17m 104s 1s
50 36y 13d 9h 55m 33s
60 37M 36y 12d 1d 18m

Speeds listed are approximate, effective speeds (i.e. number of
circuit evaluations per second) after overhead for
fault-tolerance.

Quadratic speedup

Is a quadratic speedup significant?

A concrete example: Circuit SAT with different clock speeds.

Classical Quantum
Input bits 1MHz 1GHz 1KHz 10KHz 1MHz

30 18s 1s 32s 3s 0.03s
40 13d 18m 17m 104s 1s
50 36y 13d 9h 55m 33s
60 37M 36y 12d 1d 18m

Speeds listed are approximate, effective speeds (i.e. number of
circuit evaluations per second) after overhead for
fault-tolerance.

Cryptographic applications of Grover’s
algorithm

Password checking (preimage-finding) is an obvious
application of Grover’s algorithm: if there are N possible
passwords, we can crack a password with O(

√
N) checks.

Grover’s algorithm can also be used as a subroutine to:
Speed up the information-set method for breaking the
McEliece cryptosystem [Bernstein ’10];
Find short lattice vectors more efficiently [Laarhoven ’15].

In all these cases, one need only increase the key length by a
constant factor to achieve the same level of security as was the
case classically.

Cryptographic applications of Grover’s
algorithm

Password checking (preimage-finding) is an obvious
application of Grover’s algorithm: if there are N possible
passwords, we can crack a password with O(

√
N) checks.

Grover’s algorithm can also be used as a subroutine to:
Speed up the information-set method for breaking the
McEliece cryptosystem [Bernstein ’10];
Find short lattice vectors more efficiently [Laarhoven ’15].

In all these cases, one need only increase the key length by a
constant factor to achieve the same level of security as was the
case classically.

Cryptographic applications of Grover’s
algorithm

Password checking (preimage-finding) is an obvious
application of Grover’s algorithm: if there are N possible
passwords, we can crack a password with O(

√
N) checks.

Grover’s algorithm can also be used as a subroutine to:
Speed up the information-set method for breaking the
McEliece cryptosystem [Bernstein ’10];
Find short lattice vectors more efficiently [Laarhoven ’15].

In all these cases, one need only increase the key length by a
constant factor to achieve the same level of security as was the
case classically.

Other notes on Grover’s algorithm

Grover’s algorithm is not parallelisable in the following sense:

Imagine we have K quantum or classical computers
solving a search problem in a space of size N.

Classical complexity: O(N/K) per computer⇒ total effort
O(N).

Quantum complexity: O(
√

N/K) per computer⇒ total
effort O(

√
NK).

Finding hash function collisions

Quantum computers can also be used to find collisions in hash
functions etc. more efficiently than classically:

[Brassard, Høyer and Tapp ’98] gave a quantum algorithm
finding a collision in an 2-to-1 function f : [N]→ X using
the function O(N1/3) times.

This beats the best possible classical complexity of
O(N1/2) function evaluations.

However, the quantum algorithm uses O(N1/3) space and
might not be faster than the best known classical
algorithms in practice [Bernstein ’09].

Finding a collision without the 2→1 promise can be done with
O(N2/3) function evaluations [Ambainis ’04], and this is tight.

Finding hash function collisions

Quantum computers can also be used to find collisions in hash
functions etc. more efficiently than classically:

[Brassard, Høyer and Tapp ’98] gave a quantum algorithm
finding a collision in an 2-to-1 function f : [N]→ X using
the function O(N1/3) times.

This beats the best possible classical complexity of
O(N1/2) function evaluations.

However, the quantum algorithm uses O(N1/3) space and
might not be faster than the best known classical
algorithms in practice [Bernstein ’09].

Finding a collision without the 2→1 promise can be done with
O(N2/3) function evaluations [Ambainis ’04], and this is tight.

Finding hash function collisions

Quantum computers can also be used to find collisions in hash
functions etc. more efficiently than classically:

[Brassard, Høyer and Tapp ’98] gave a quantum algorithm
finding a collision in an 2-to-1 function f : [N]→ X using
the function O(N1/3) times.

This beats the best possible classical complexity of
O(N1/2) function evaluations.

However, the quantum algorithm uses O(N1/3) space and
might not be faster than the best known classical
algorithms in practice [Bernstein ’09].

Finding a collision without the 2→1 promise can be done with
O(N2/3) function evaluations [Ambainis ’04], and this is tight.

Finding hash function collisions

Quantum computers can also be used to find collisions in hash
functions etc. more efficiently than classically:

[Brassard, Høyer and Tapp ’98] gave a quantum algorithm
finding a collision in an 2-to-1 function f : [N]→ X using
the function O(N1/3) times.

This beats the best possible classical complexity of
O(N1/2) function evaluations.

However, the quantum algorithm uses O(N1/3) space and
might not be faster than the best known classical
algorithms in practice [Bernstein ’09].

Finding a collision without the 2→1 promise can be done with
O(N2/3) function evaluations [Ambainis ’04], and this is tight.

Quantum speedup of backtracking algorithms

Backtracking algorithms can be used to solve constraint
satisfaction problems (CSPs) where we are able to determine
efficiently whether partial assignments to the variables can be
extended to full solutions.

These algorithms explore a tree of partial solutions until
they find a complete solution to the problem.

[AM ’15, informal]: if there is a classical backtracking
algorithm which solves a CSP on n variables in time T,
there is a quantum algorithm which solves the same
problem in time O(

√
T poly(n)).

Can be applied e.g. to speed up enumeration attacks on
lattice-based cryptosystems [del Pino et al. ’16, Alkim et al. ’16].

Quantum speedup of backtracking algorithms

Backtracking algorithms can be used to solve constraint
satisfaction problems (CSPs) where we are able to determine
efficiently whether partial assignments to the variables can be
extended to full solutions.

These algorithms explore a tree of partial solutions until
they find a complete solution to the problem.

[AM ’15, informal]: if there is a classical backtracking
algorithm which solves a CSP on n variables in time T,
there is a quantum algorithm which solves the same
problem in time O(

√
T poly(n)).

Can be applied e.g. to speed up enumeration attacks on
lattice-based cryptosystems [del Pino et al. ’16, Alkim et al. ’16].

Quantum speedup of backtracking algorithms

Backtracking algorithms can be used to solve constraint
satisfaction problems (CSPs) where we are able to determine
efficiently whether partial assignments to the variables can be
extended to full solutions.

These algorithms explore a tree of partial solutions until
they find a complete solution to the problem.

[AM ’15, informal]: if there is a classical backtracking
algorithm which solves a CSP on n variables in time T,
there is a quantum algorithm which solves the same
problem in time O(

√
T poly(n)).

Can be applied e.g. to speed up enumeration attacks on
lattice-based cryptosystems [del Pino et al. ’16, Alkim et al. ’16].

Quantum speedup of backtracking algorithms

Backtracking algorithms can be used to solve constraint
satisfaction problems (CSPs) where we are able to determine
efficiently whether partial assignments to the variables can be
extended to full solutions.

These algorithms explore a tree of partial solutions until
they find a complete solution to the problem.

[AM ’15, informal]: if there is a classical backtracking
algorithm which solves a CSP on n variables in time T,
there is a quantum algorithm which solves the same
problem in time O(

√
T poly(n)).

Can be applied e.g. to speed up enumeration attacks on
lattice-based cryptosystems [del Pino et al. ’16, Alkim et al. ’16].

Summary and further reading

Quantum computation has already had a substantial
impact on the world of cryptography. . .

. . . the actual development of a large-scale quantum
computer could have significantly more impact.

Very few people have worked on quantum algorithms for
breaking cryptosystems!

See the Quantum Algorithm Zoo for over 320 papers on
quantum algorithms: http://math.nist.gov/quantum/zoo/

Quantum algorithms: an overview,
AM, npj Quantum Information 2, 2016

www.nature.com/articles/npjqi201523

http://math.nist.gov/quantum/zoo/
www.nature.com/articles/npjqi201523

Summary and further reading

Quantum computation has already had a substantial
impact on the world of cryptography. . .

. . . the actual development of a large-scale quantum
computer could have significantly more impact.

Very few people have worked on quantum algorithms for
breaking cryptosystems!

See the Quantum Algorithm Zoo for over 320 papers on
quantum algorithms: http://math.nist.gov/quantum/zoo/

Quantum algorithms: an overview,
AM, npj Quantum Information 2, 2016

www.nature.com/articles/npjqi201523

http://math.nist.gov/quantum/zoo/
www.nature.com/articles/npjqi201523

Summary and further reading

Quantum computation has already had a substantial
impact on the world of cryptography. . .

. . . the actual development of a large-scale quantum
computer could have significantly more impact.

Very few people have worked on quantum algorithms for
breaking cryptosystems!

See the Quantum Algorithm Zoo for over 320 papers on
quantum algorithms: http://math.nist.gov/quantum/zoo/

Quantum algorithms: an overview,
AM, npj Quantum Information 2, 2016

www.nature.com/articles/npjqi201523

http://math.nist.gov/quantum/zoo/
www.nature.com/articles/npjqi201523

Summary and further reading

Quantum computation has already had a substantial
impact on the world of cryptography. . .

. . . the actual development of a large-scale quantum
computer could have significantly more impact.

Very few people have worked on quantum algorithms for
breaking cryptosystems!

See the Quantum Algorithm Zoo for over 320 papers on
quantum algorithms: http://math.nist.gov/quantum/zoo/

Quantum algorithms: an overview,
AM, npj Quantum Information 2, 2016

www.nature.com/articles/npjqi201523

http://math.nist.gov/quantum/zoo/
www.nature.com/articles/npjqi201523

