Quantum algorithms for shifted subset problems

Ashley Montanaro¹

¹Department of Computer Science University of Bristol Bristol, UK

21st August 2008

The abelian hidden subgroup problem is a major success of quantum computation.

The abelian hidden subgroup problem is a major success of quantum computation.

The abelian hidden subgroup problem is a major success of quantum computation.

Abelian Hidden Subgroup Problem

Input:

- A known abelian group *G*
- An unknown subgroup $H \leq G$

The abelian hidden subgroup problem is a major success of quantum computation.

Abelian Hidden Subgroup Problem

Input:

- A known abelian group *G*
- An unknown subgroup $H \leq G$
- An oracle function $f : G \to S$.

Promise:

- f is constant on cosets of H in G
- *f* is distinct on each coset.

The abelian hidden subgroup problem is a major success of quantum computation.

Abelian Hidden Subgroup Problem

Input:

- A known abelian group *G*
- An unknown subgroup $H \leq G$
- An oracle function $f : G \to S$.

Promise:

- f is constant on cosets of H in G
- *f* is distinct on each coset.

Task: Determine *H*.

The abelian hidden subgroup problem is a major success of quantum computation.

Abelian Hidden Subgroup Problem

Input:

- A known abelian group *G*
- An unknown subgroup $H \leq G$
- An oracle function $f : G \to S$.

Promise:

- f is constant on cosets of H in G
- *f* is distinct on each coset.

Task: Determine *H*.

$$G = \mathbb{Z}_6 \times \mathbb{Z}_6, \\ H = \mathbb{Z}_2 \times \mathbb{Z}_3.$$

Generalising the abelian HSP

The first steps of the quantum algorithm for the abelian HSP are:

• Query *f* on a superposition of all elements in *G*, giving $\sum_{g \in G} |g\rangle |f(g)\rangle$.

Generalising the abelian HSP

The first steps of the quantum algorithm for the abelian HSP are:

• Query *f* on a superposition of all elements in *G*, giving $\sum_{g \in G} |g\rangle |f(g)\rangle$.

Measure the second register, leaving

$$|\psi\rangle = \sum_{g \in G, f(g)=f_0} |g\rangle = \sum_{g \in H} |g+x\rangle$$

for some random *x*.

Generalising the abelian HSP

The first steps of the quantum algorithm for the abelian HSP are:

• Query *f* on a superposition of all elements in *G*, giving $\sum_{g \in G} |g\rangle |f(g)\rangle$.

Measure the second register, leaving

$$|\psi
angle = \sum_{g \in G, f(g)=f_0} |g
angle = \sum_{g \in H} |g+x|$$

for some random *x*.

The algorithm then identifies H by applying the QFT to $|\psi\rangle$ and measuring.

This can be generalised to the following [Childs et al. '07]:

This can be generalised to the following [Childs et al. '07]:

Shifted Subset Problem Input: • A known abelian group *G*

This can be generalised to the following [Childs et al. '07]:

Shifted Subset Problem

Input:

- A known abelian group *G*
- An unknown subset S ⊆ G picked from some known family of subsets

This can be generalised to the following [Childs et al. '07]:

Shifted Subset Problem

Input:

- A known abelian group *G*
- An unknown subset S ⊆ G picked from some known family of subsets
- An oracle producing quantum states of the form

$$|S+x\rangle = \sum_{s\in S} |s+x\rangle$$
,

for some arbitrary shift *x*.

Task: Determine S.

This can be generalised to the following [Childs et al. '07]:

Shifted Subset Problem

Input:

- A known abelian group *G*
- An unknown subset S ⊆ G picked from some known family of subsets
- An oracle producing quantum states of the form

$$|S+x\rangle = \sum_{s\in S} |s+x\rangle$$
,

for some arbitrary shift *x*.

Task: Determine S.

This can be generalised to the following [Childs et al. '07]:

Shifted Subset Problem

Input:

- A known abelian group *G*
- An unknown subset S ⊆ G picked from some known family of subsets
- An oracle producing quantum states of the form

$$|S+x\rangle = \sum_{s\in S} |s+x\rangle,$$

for some arbitrary shift *x*. **Task:** Determine *S*.

Childs et al considered subsets of the additive group of \mathbb{F}_q^n for constant *n*.

- In particular, hidden spheres in \mathbb{F}_q^n ($x = (x_1, ..., x_n)$ is on the sphere in \mathbb{F}_q^n with radius $r \in \mathbb{F}_q$ centred at the origin if $\sum_i x_i^2 = r$).
- Found a poly(log *q*) quantum algorithm to determine the quadratic character of the radius of a hidden sphere when *n* is odd.

Childs et al considered subsets of the additive group of \mathbb{F}_q^n for constant *n*.

- In particular, hidden spheres in \mathbb{F}_q^n ($x = (x_1, ..., x_n)$ is on the sphere in \mathbb{F}_q^n with radius $r \in \mathbb{F}_q$ centred at the origin if $\sum_i x_i^2 = r$).
- Found a poly(log *q*) quantum algorithm to determine the quadratic character of the radius of a hidden sphere when *n* is odd.

Here, we consider the boolean cube \mathbb{Z}_2^n .

Goal: quantum algorithms to find subsets of \mathbb{Z}_2^n in time poly(*n*).

This is a natural generalisation of Simon's problem.

The shifted sphere problem

Definition. Let |x| be the Hamming weight of the bit-string x. The sphere of radius r in the cube \mathbb{Z}_2^n is the set $S_r = \{x : |x| = r\}$.

The shifted sphere problem

Definition. Let |x| be the Hamming weight of the bit-string x. The sphere of radius r in the cube \mathbb{Z}_2^n is the set $S_r = \{x : |x| = r\}$.

Shifted Sphere Problem Input: • An unknown radius r, $0 \leq r \leq n/2$

The shifted sphere problem

Definition. Let |x| be the Hamming weight of the bit-string x. The sphere of radius r in the cube \mathbb{Z}_2^n is the set $S_r = \{x : |x| = r\}$.

Shifted Sphere Problem

Input:

- An unknown radius r, $0 \leq r \leq n/2$
- An oracle producing quantum states of the form

$$|S_r + x\rangle = \frac{1}{\sqrt{\binom{n}{r}}} \sum_{s \in S_r} |s + x\rangle,$$

for some arbitrary shift *x*. **Task:** Determine *r*.

Main results

• A polynomial-time quantum algorithm for the hidden sphere problem.

Main results

• A polynomial-time quantum algorithm for the hidden sphere problem.

Polynomial-time quantum algorithms for some other classes of subsets.

Main results

• A polynomial-time quantum algorithm for the hidden sphere problem.

Polynomial-time quantum algorithms for some other classes of subsets.

An exponential black-box separation from classical computation for any shifted subset problem that has a polynomial-time quantum algorithm.

Quantum component is the same for any subset $S \subseteq \mathbb{Z}_2^n$.

Quantum component is the same for any subset $S \subseteq \mathbb{Z}_2^n$.

• Given $\frac{1}{\sqrt{|S|}} \sum_{s \in S} |s + x\rangle$, remove unknown shift by applying Hadamards on each qubit:

Quantum component is the same for any subset $S \subseteq \mathbb{Z}_2^n$.

• Given $\frac{1}{\sqrt{|S|}} \sum_{s \in S} |s + x\rangle$, remove unknown shift by applying Hadamards on each qubit:

$$H^{\otimes n}|S+x\rangle = \frac{1}{\sqrt{|S|2^n}} \sum_{y \in S} \sum_{z \in \{0,1\}^n} (-1)^{z \cdot (y+x)} |z\rangle$$

Quantum component is the same for any subset $S \subseteq \mathbb{Z}_2^n$.

• Given $\frac{1}{\sqrt{|S|}} \sum_{s \in S} |s + x\rangle$, remove unknown shift by applying Hadamards on each qubit:

$$\begin{aligned} H^{\otimes n} |S+x\rangle &= \frac{1}{\sqrt{|S|2^n}} \sum_{y \in S} \sum_{z \in \{0,1\}^n} (-1)^{z \cdot (y+x)} |z\rangle \\ &= \frac{1}{\sqrt{|S|2^n}} \sum_{z \in \{0,1\}^n} (-1)^{x \cdot z} \sum_{y \in S} (-1)^{y \cdot z} |z\rangle. \end{aligned}$$

Algorithm outline (2)

Measure this state, giving rise to the following probability distribution.

$$\pi_S(z) = \frac{1}{|S|2^n} \left(\sum_{y \in S} (-1)^{y \cdot z} \right)^2$$

• Use samples from this distribution to infer *S*.

Algorithm outline (2)

Measure this state, giving rise to the following probability distribution.

$$\pi_S(z) = \frac{1}{|S|2^n} \left(\sum_{y \in S} (-1)^{y \cdot z}\right)^2$$

• Use samples from this distribution to infer *S*.

What does this distribution look like for the shifted sphere problem?

Shifted spheres

We have

$$\pi_{S_r}(z) = \frac{1}{\binom{n}{r}2^n} \left(\sum_{|y|=r} (-1)^{y \cdot z}\right)^2$$

which only depends on r, |z|.

Shifted spheres

We have

$$\pi_{S_r}(z) = \frac{1}{\binom{n}{r}2^n} \left(\sum_{|y|=r} (-1)^{y \cdot z}\right)^2$$

which only depends on r, |z|.

The sum in red is an example of a Krawtchouk polynomial, which have been much studied in coding theory. What do these probability distributions look like?

Shifted spheres

We have

$$\pi_{S_r}(z) = \frac{1}{\binom{n}{r}2^n} \left(\sum_{|y|=r} (-1)^{y \cdot z}\right)^2$$

which only depends on r, |z|.

The sum in red is an example of a Krawtchouk polynomial, which have been much studied in coding theory. What do these probability distributions look like?

It turns out that:

 For any *r*, this probability distribution has a lot of weight at |*z*| ≈ *n*/2.

It turns out that:

- For any *r*, this probability distribution has a lot of weight at |*z*| ≈ *n*/2.
- We can calculate an exact expression for the Krawtchouk polynomial at |z| = n/2 (*n* even) and |z| = (n-1)/2 (*n* odd).

It turns out that:

- For any *r*, this probability distribution has a lot of weight at |*z*| ≈ n/2.
- We can calculate an exact expression for the Krawtchouk polynomial at |z| = n/2 (*n* even) and |z| = (n-1)/2 (*n* odd).

Algorithm sketch:

Sample from π_{Sr} some number of times. Count the number of occurrences of outcomes z with |z| = n/2 (or (n-1)/2).

It turns out that:

- For any *r*, this probability distribution has a lot of weight at |*z*| ≈ n/2.
- We can calculate an exact expression for the Krawtchouk polynomial at |z| = n/2 (*n* even) and |z| = (n-1)/2 (*n* odd).

Algorithm sketch:

- Sample from π_{Sr} some number of times. Count the number of occurrences of outcomes *z* with |*z*| = *n*/2 (or (*n* − 1)/2).
- Use this count to estimate *r*.

Set $\pi_r(x) = \sum_{|z|=x} \pi_{S_r}(z)$. For even *n*, one can show that:

• If *r* is odd, $\pi_r(n/2) = 0$. If *r* is even, $\pi_r(n/2) = \Omega(1/n)$.

Set $\pi_r(x) = \sum_{|z|=x} \pi_{S_r}(z)$. For even *n*, one can show that:

- If *r* is odd, $\pi_r(n/2) = 0$. If *r* is even, $\pi_r(n/2) = \Omega(1/n)$.
- For *r* even and $r \neq s$, $|\pi_r(n/2) \pi_s(n/2)| = \Omega(n^{-3})$.

Set $\pi_r(x) = \sum_{|z|=x} \pi_{S_r}(z)$. For even *n*, one can show that:

- If *r* is odd, $\pi_r(n/2) = 0$. If *r* is even, $\pi_r(n/2) = \Omega(1/n)$.
- For *r* even and $r \neq s$, $|\pi_r(n/2) \pi_s(n/2)| = \Omega(n^{-3})$.
- For *r* odd and $r \neq s$, $|\pi_r(n/2 1) \pi_s(n/2 1)| = \Omega(n^{-3})$.

Set $\pi_r(x) = \sum_{|z|=x} \pi_{S_r}(z)$. For even *n*, one can show that:

- If *r* is odd, $\pi_r(n/2) = 0$. If *r* is even, $\pi_r(n/2) = \Omega(1/n)$.
- For *r* even and $r \neq s$, $|\pi_r(n/2) \pi_s(n/2)| = \Omega(n^{-3})$.
- For *r* odd and $r \neq s$, $|\pi_r(n/2 1) \pi_s(n/2 1)| = \Omega(n^{-3})$.

Implies that $O(n^6)$ samples are sufficient to estimate *r* with a bounded probability of error.

Bonus: O(n) samples are enough to identify whether r is odd or even.

n odd: $O(n^4)$ samples are sufficient to estimate *r*.

Summary

- We've introduced shifted subset problems on the cube Zⁿ₂
 a natural generalisation of the abelian hidden subgroup problem.
- We've seen a polynomial-time quantum algorithm for the shifted sphere problem.
- This gives an exponential separation from classical computation.

Summary

- We've introduced shifted subset problems on the cube Zⁿ₂
 a natural generalisation of the abelian hidden subgroup problem.
- We've seen a polynomial-time quantum algorithm for the shifted sphere problem.
- This gives an exponential separation from classical computation.

Possible extensions:

- Improve the time complexity of the algorithm to something reasonable.
- Find other interesting families of subsets to distinguish.
- Consider the group \mathbb{Z}_k^n , where *k* is constant.

Summary

- We've introduced shifted subset problems on the cube Zⁿ₂
 a natural generalisation of the abelian hidden subgroup problem.
- We've seen a polynomial-time quantum algorithm for the shifted sphere problem.
- This gives an exponential separation from classical computation.

Possible extensions:

- Improve the time complexity of the algorithm to something reasonable.
- Find other interesting families of subsets to distinguish.
- Consider the group \mathbb{Z}_k^n , where *k* is constant.

Applications?

The end

Further reading: arXiv:0806.3362.

Thanks for your time!

We can also give polynomial-time quantum algorithms for some other classes of subsets:

• Hamming balls, i.e. sets {*x* : |*x*| ≤ *r*}. Reduces to the shifted sphere problem.

- Hamming balls, i.e. sets {*x* : |*x*| ≤ *r*}. Reduces to the shifted sphere problem.
- Subsets whose sizes are very different. Follows from the fact that the probability of getting outcome 0 is proportional to the size of the subset.

- Hamming balls, i.e. sets {*x* : |*x*| ≤ *r*}. Reduces to the shifted sphere problem.
- **Subsets whose sizes are very different.** Follows from the fact that the probability of getting outcome 0 is proportional to the size of the subset.
- Juntas. Sets whose characteristic functions each depend on a constant number of variables.

- Hamming balls, i.e. sets $\{x : |x| \le r\}$. Reduces to the shifted sphere problem.
- **Subsets whose sizes are very different.** Follows from the fact that the probability of getting outcome 0 is proportional to the size of the subset.
- Juntas. Sets whose characteristic functions each depend on a constant number of variables.
- **Parity functions.** Sets whose characteristic functions are parity functions.

We define a black-box (oracular) problem to show a separation from classical computation. It uses three oracle functions:

A colouring operator c : {0, 1}²ⁿ → [2²ⁿ].
 [gives each point a colour; |S| points have each colour]

We define a black-box (oracular) problem to show a separation from classical computation. It uses three oracle functions:

- A colouring operator c: {0, 1}²ⁿ → [2²ⁿ].
 [gives each point a colour; |S| points have each colour]
- A shifting operator s: {0, 1}²ⁿ × [2²ⁿ] → {0, 1}ⁿ.
 [converts (point, colour) to (shifted point); depends on S]

We define a black-box (oracular) problem to show a separation from classical computation. It uses three oracle functions:

- A colouring operator c: {0, 1}²ⁿ → [2²ⁿ].
 [gives each point a colour; |S| points have each colour]
- A shifting operator s: {0, 1}²ⁿ × [2²ⁿ] → {0, 1}ⁿ.
 [converts (point, colour) to (shifted point); depends on S]
- An uncolouring operator c⁻¹: [2²ⁿ] × {0, 1}ⁿ → {0, 1}²ⁿ.
 [uncomputes the colour]

We define a black-box (oracular) problem to show a separation from classical computation. It uses three oracle functions:

- A colouring operator c : {0, 1}²ⁿ → [2²ⁿ].
 [gives each point a colour; |S| points have each colour]
- A shifting operator s: {0, 1}²ⁿ × [2²ⁿ] → {0, 1}ⁿ.
 [converts (point, colour) to (shifted point); depends on S]
- An uncolouring operator c⁻¹: [2²ⁿ] × {0, 1}ⁿ → {0, 1}²ⁿ.
 [uncomputes the colour]

Goal: use these operators to find *S*. Can show that any classical algorithm must make $\Omega(2^{n/2})$ queries to *c* to get *any* information about *S*.