Limitations on quantum dimensionality reduction

Aram Harrow^{1,2}, Ashley Montanaro³ and Tony Short³

¹Department of Computer Science & Engineering, University of Washington

²Department of Mathematics, University of Bristol

³Centre for Quantum Information and Foundations, Department of Applied Mathematics and Theoretical Physics, University of Cambridge

arXiv:1012.2262

- High-dimensional data is ubiquitous in computer science.
- However, algorithms operating on such data are often inefficient (e.g. having runtime exponential in the dimension).
- This problem can be mitigated using a result known as the Johnson-Lindenstrauss Lemma.

- High-dimensional data is ubiquitous in computer science.
- However, algorithms operating on such data are often inefficient (e.g. having runtime exponential in the dimension).
- This problem can be mitigated using a result known as the Johnson-Lindenstrauss Lemma.

JL Lemma

Given a set *S* of *n d*-dimensional real vectors, there is a linear map $\mathcal{E} : \mathbb{R}^d \to \mathbb{R}^{O(\log n/\epsilon^2)}$ that preserves all Euclidean distances in *S*, up to a multiple of $1 - \epsilon$. Further, there is an efficient randomised algorithm to find and implement \mathcal{E} .

The JL Lemma is in fact a corollary of the following result.

JL Lemma

For all dimensions *d*, *e*, there is a distribution \mathcal{D} over linear maps $\mathcal{E} : \mathbb{R}^d \to \mathbb{R}^e$ such that, for all real vectors *v*, *w*,

 $\Pr_{\mathcal{E}\sim\mathcal{D}}[(1-\epsilon)\|v-w\|_2 \leq \|\mathcal{E}(v)-\mathcal{E}(w)\|_2 \leq \|v-w\|_2] \geq 1-\exp(-\Omega(\epsilon^2 e)).$

Such a distribution \mathcal{D} is known as an embedding with distortion $1/(1-\varepsilon)$.

The JL Lemma is in fact a corollary of the following result.

JL Lemma

For all dimensions *d*, *e*, there is a distribution \mathcal{D} over linear maps $\mathcal{E} : \mathbb{R}^d \to \mathbb{R}^e$ such that, for all real vectors *v*, *w*,

 $\Pr_{\mathcal{E}\sim\mathcal{D}}[(1-\epsilon)\|v-w\|_2 \leq \|\mathcal{E}(v)-\mathcal{E}(w)\|_2 \leq \|v-w\|_2] \geq 1-\exp(-\Omega(\epsilon^2 e)).$

Such a distribution \mathcal{D} is known as an embedding with distortion $1/(1-\varepsilon)$.

Note the following interesting aspects of this result:

- The target dimension *e* does not depend on the source dimension *d* at all.
- The distribution \mathcal{D} does not depend on the vectors whose dimensionality is to be reduced.

Uses of the JL Lemma and other norm embeddings in quantum information theory

- [Cleve et al '04] used the JL Lemma to give an upper bound on the amount of shared entanglement required to win a class of nonlocal games.
- [Gavinsky, Kempe and de Wolf '06] used the JL Lemma to simulate arbitrary quantum communication protocols by quantum SMP protocols.
- [Aubrun, Szarek and Werner '10] have used a version of Dvoretzky's theorem on "almost-Euclidean" subspaces of matrices under Schatten norms to give counterexamples to the additivity conjectures of quantum information theory.
- [Fawzi, Hayden and Sen '10] have used embeddings of the "ℓ₁(ℓ₂)" norm to prove the existence of strong entropic uncertainty relations.

Quantum embeddings?

- We would like to generalise the JL Lemma to the quantum world. What should such a generalisation look like?
- Classically, an embedding is a distribution over linear maps which approximately preserves distances between vectors with high probability.
- Analogously, a quantum embedding should be a distribution over physically implementable operations which approximately preserves distances between quantum states with high probability.

• (Mixed) quantum states are positive semidefinite matrices with trace 1.

- (Mixed) quantum states are positive semidefinite matrices with trace 1.
- The distance between quantum states ρ, σ can be measured using the Schatten *p*-norm

$$\|\rho - \sigma\|_p = \left(\sum_i |\lambda_i(\rho - \sigma)|^p\right)^{1/p}$$
,

where $\lambda_i(X)$ is the *i*'th eigenvalue of *X*. The case p = 1 is known as the trace norm.

- (Mixed) quantum states are positive semidefinite matrices with trace 1.
- The distance between quantum states ρ, σ can be measured using the Schatten *p*-norm

$$\|\rho - \sigma\|_p = \left(\sum_i |\lambda_i(\rho - \sigma)|^p\right)^{1/p},$$

where $\lambda_i(X)$ is the *i*'th eigenvalue of *X*. The case p = 1 is known as the trace norm.

• Physically implementable operations in quantum theory (maps taking quantum states to quantum states) are known as quantum channels.

- (Mixed) quantum states are positive semidefinite matrices with trace 1.
- The distance between quantum states ρ, σ can be measured using the Schatten *p*-norm

$$\|
ho - \sigma\|_p = \left(\sum_i |\lambda_i(
ho - \sigma)|^p\right)^{1/p},$$

where $\lambda_i(X)$ is the *i*'th eigenvalue of *X*. The case p = 1 is known as the trace norm.

- Physically implementable operations in quantum theory (maps taking quantum states to quantum states) are known as quantum channels.
- A quantum channel is a completely positive, trace-preserving map from $\mathcal{B}(d)$ to $\mathcal{B}(e)$ (for some *d*, *e*), where $\mathcal{B}(d)$ denotes the set of *d*-dim. Hermitian matrices.

Quantum embeddings

Quantum embeddings

A quantum embedding from $S \subseteq \mathcal{B}(d)$ to $\mathcal{B}(e)$ in the Schatten *p*-norm, with distortion $1/(1 - \epsilon)$ and failure probability δ , is a distribution \mathcal{D} over quantum channels $\mathcal{E} : \mathcal{B}(d) \to \mathcal{B}(e)$ such that, for all $\rho, \sigma \in S$,

$$\Pr_{\mathcal{E}\sim\mathcal{D}}\left[(1-\epsilon)\|\rho-\sigma\|_{p}\leqslant\|\mathcal{E}(\rho)-\mathcal{E}(\sigma)\|_{p}\leqslant\|\rho-\sigma\|_{p}\right]\geqslant1-\delta$$

Quantum embeddings

Quantum embeddings

A quantum embedding from $S \subseteq \mathcal{B}(d)$ to $\mathcal{B}(e)$ in the Schatten *p*-norm, with distortion $1/(1 - \epsilon)$ and failure probability δ , is a distribution \mathcal{D} over quantum channels $\mathcal{E} : \mathcal{B}(d) \to \mathcal{B}(e)$ such that, for all $\rho, \sigma \in S$,

$$\Pr_{\mathcal{E}\sim\mathcal{D}}\left[(1-\epsilon)\|\rho-\sigma\|_{p}\leqslant\|\mathcal{E}(\rho)-\mathcal{E}(\sigma)\|_{p}\leqslant\|\rho-\sigma\|_{p}\right]\geqslant1-\delta$$

- Note that we generalise the definition of classical embeddings to allow embeddings that only work for subsets *S* of quantum states.
- We will be particularly interested in unitarily invariant subsets: sets *S* where ρ ∈ *S* implies UρU[†] ∈ *S* for all unitary operators *U*.
- An interesting such subset is the set of all *d*-dimensional pure states.

Results in this talk

Quantum dimensionality reduction in the 2-norm is very limited.

2 Two operational meanings of the 2-norm.

Oimensionality reduction in the trace norm: upper and lower bounds.

Dimensionality reduction in the 2-norm

Theorem

Let \mathcal{D} be a distribution over quantum channels $\mathcal{E} : \mathcal{B}(\mathbb{C}^d) \to \mathcal{B}(\mathbb{C}^e)$ such that, for fixed quantum states $\rho \neq \sigma$ and for all unitary operators $U \in U(d)$,

 $\Pr_{\mathcal{E}\sim\mathcal{D}}[\|\mathcal{E}(U\rho U^{\dagger}) - \mathcal{E}(U\sigma U^{\dagger})\|_{2} \ge (1-\epsilon)\|U\rho U^{\dagger} - U\sigma U^{\dagger}\|_{2}] \ge 1-\delta$

for some $0 \leq \epsilon, \delta \leq 1$. Then $e \geq (1 - \delta)(1 - \epsilon)^2 d$.

Corollary

Any embedding of a unitarily invariant set of states from *d* to *e* dimensions which has constant distortion in the 2-norm and succeeds with constant probability must satisfy $e = \Omega(d)$.

The theorem is essentially immediate from the following

Lemma

Let ρ and σ be quantum states and let $\mathcal{E} : \mathcal{B}(\mathbb{C}^d) \to \mathcal{B}(\mathbb{C}^e)$ be a quantum channel. Then

$$\int \|\mathcal{E}(U\rho U^{\dagger}) - \mathcal{E}(U\sigma U^{\dagger})\|_{2}^{2} dU \leq \frac{d(e^{2}-1)}{e(d^{2}-1)}\|\rho - \sigma\|_{2}^{2}$$

The theorem is essentially immediate from the following

Lemma

Let ρ and σ be quantum states and let $\mathcal{E} : \mathcal{B}(\mathbb{C}^d) \to \mathcal{B}(\mathbb{C}^e)$ be a quantum channel. Then

$$\int \|\mathcal{E}(U\rho U^{\dagger}) - \mathcal{E}(U\sigma U^{\dagger})\|_{2}^{2} dU \leqslant \frac{d(e^{2}-1)}{e(d^{2}-1)}\|\rho - \sigma\|_{2}^{2}.$$

The left-hand side of this inequality can be written out explicitly in terms of the flip (swap) operator F as

$$\int \|\mathcal{E}(U\rho U^{\dagger}) - \mathcal{E}(U\sigma U^{\dagger})\|_{2}^{2} dU = \frac{\|\rho - \sigma\|_{2}^{2}}{d^{2} - 1} \operatorname{tr} \left[F \mathcal{E}^{\otimes 2} \left(F - \frac{I_{d^{2}}}{d} \right) \right]$$

and bounded using a new (?) inequality $\operatorname{tr}[F \mathcal{E}^{\otimes 2}(F)] \leq de$.

Operational meanings of the 2-norm

How meaningful/useful is it to preserve the 2-norm distance between quantum states?

Operational meanings of the 2-norm

How meaningful/useful is it to preserve the 2-norm distance between quantum states?

- The trace distance ||ρ σ||₁ between two quantum states ρ and σ has the following operational interpretation.
- Imagine we are given a state promised to be either ρ or σ, and want to determine which is the case. The optimal success probability we can achieve is precisely
 ¹/₂ + ¹/₄ ||ρ σ||₁.

Operational meanings of the 2-norm

How meaningful/useful is it to preserve the 2-norm distance between quantum states?

- The trace distance ||ρ σ||₁ between two quantum states ρ and σ has the following operational interpretation.
- Imagine we are given a state promised to be either ρ or σ, and want to determine which is the case. The optimal success probability we can achieve is precisely
 ¹/₂ + ¹/₄ ||ρ σ||₁.
- It is less obvious that the 2-norm distance ||ρ σ||₂ has a nice operational interpretation, and this distance measure is usually only used for calculational simplicity.
- However, it turns out that there are (at least) two operational interpretations of this distance measure.

 We are given a description of two different states ρ and σ. An adversary prepares two systems in one of the states
 ρ ⊗ ρ, σ ⊗ σ, ρ ⊗ σ or σ ⊗ ρ, with equal probability of each.

- We are given a description of two different states ρ and σ. An adversary prepares two systems in one of the states
 ρ ⊗ ρ, σ ⊗ σ, ρ ⊗ σ or σ ⊗ ρ, with equal probability of each.
- He then applies an unknown unitary *U* to each system (i.e. he applies *U* ⊗ *U* to the joint state).

- We are given a description of two different states ρ and σ. An adversary prepares two systems in one of the states
 ρ ⊗ ρ, σ ⊗ σ, ρ ⊗ σ or σ ⊗ ρ, with equal probability of each.
- He then applies an unknown unitary *U* to each system (i.e. he applies *U* ⊗ *U* to the joint state).
- Our task is to determine whether the two systems have the same state (i.e. were originally $\rho \otimes \rho$ or $\sigma \otimes \sigma$) or different states.
- This models equality testing in a two-party scenario in which the preparer and tester do not share a reference frame (local basis).

- We are given a description of two different states ρ and σ. An adversary prepares two systems in one of the states
 ρ ⊗ ρ, σ ⊗ σ, ρ ⊗ σ or σ ⊗ ρ, with equal probability of each.
- He then applies an unknown unitary *U* to each system (i.e. he applies *U* ⊗ *U* to the joint state).
- Our task is to determine whether the two systems have the same state (i.e. were originally $\rho \otimes \rho$ or $\sigma \otimes \sigma$) or different states.
- This models equality testing in a two-party scenario in which the preparer and tester do not share a reference frame (local basis).

Theorem

The maximal probability of success is $\frac{1}{2} + \frac{1}{8} \|\rho - \sigma\|_2^2$.

State discrimination with a random measurement

- We are given a state which is promised to be either ρ or σ, with equal probability of each, and we wish to determine which is the case.
- We are allowed to perform a projective measurement in a random basis (i.e. to apply a random unitary operator and measure in the computational basis), and have to decide whether the state is ρ or σ based on the outcome.

State discrimination with a random measurement

- We are given a state which is promised to be either ρ or σ, with equal probability of each, and we wish to determine which is the case.
- We are allowed to perform a projective measurement in a random basis (i.e. to apply a random unitary operator and measure in the computational basis), and have to decide whether the state is ρ or σ based on the outcome.

Theorem

The expected optimal probability of success p satisfies

$$\frac{1}{2} + \frac{1}{6} \|\rho - \sigma\|_2 \leqslant p \leqslant \frac{1}{2} + \frac{1}{2} \|\rho - \sigma\|_2.$$

The lower bound was originally shown by [Ambainis and Emerson '07]; also see the proof by [Matthews, Wehner and Winter '09].

The situation in the trace norm is somewhat better.

Theorem

For any pair of rank *r* quantum states ρ , σ , there is a distrib. \mathcal{D} on quantum channels $\mathcal{E} : \mathcal{B}(\mathbb{C}^d) \to \mathcal{B}(\mathbb{C}^{O(\sqrt{rd/\epsilon})})$ such that

$$\Pr_{\mathcal{E}\sim\mathcal{D}}[\|\mathcal{E}(\rho) - \mathcal{E}(\sigma)\|_{1} \ge (1-\epsilon)\|\rho - \sigma\|_{1}] \ge 1 - d \exp(-K\epsilon d)$$

for some universal constant K.

The situation in the trace norm is somewhat better.

Theorem

For any pair of rank *r* quantum states ρ , σ , there is a distrib. \mathcal{D} on quantum channels $\mathcal{E} : \mathcal{B}(\mathbb{C}^d) \to \mathcal{B}(\mathbb{C}^{O(\sqrt{rd/\epsilon})})$ such that

$$\Pr_{\mathcal{E} \sim \mathcal{D}} [\|\mathcal{E}(\rho) - \mathcal{E}(\sigma)\|_1 \ge (1 - \epsilon) \|\rho - \sigma\|_1] \ge 1 - d \exp(-K\epsilon d)$$

for some universal constant K.

- Note that this is in contrast to the classical case, where dimensionality reduction in the *l*₁ norm is known to be considerably harder than the *l*₂ norm.
- [Winter '04] had previously shown this theorem for *r* = 1 (pure states) using essentially the same distribution \mathcal{D} .

• The embedding we will use is conceptually simple: apply a random unitary and trace out (discard) a subsystem.

- The embedding we will use is conceptually simple: apply a random unitary and trace out (discard) a subsystem.
- However, when the target dimension *e* doesn't divide *d*, we are forced to consider random isometries instead.
- Recall that an isometry is a norm-preserving linear map, i.e. a map taking an orthonormal basis of one space to an orthonormal set of vectors in another (potentially larger) space.

- The embedding we will use is conceptually simple: apply a random unitary and trace out (discard) a subsystem.
- However, when the target dimension *e* doesn't divide *d*, we are forced to consider random isometries instead.
- Recall that an isometry is a norm-preserving linear map, i.e. a map taking an orthonormal basis of one space to an orthonormal set of vectors in another (potentially larger) space.
- The embedding thus consists of applying a fixed isometry that maps ℂ^d → ℂ^e ⊗ ℂ^[d/e], applying a random unitary operator, and discarding the second subsystem.

We extend the techniques of [Winter '04].

- Let *V* be the isometry that was randomly picked, and let \mathcal{E}_V be the corresponding quantum channel implemented.
- In order for it to hold that $\|\mathcal{E}_V(\rho \sigma)\|_1 \ge (1 \epsilon)\|\rho \sigma\|_1$, it suffices to exhibit an operator M with $0 \le M \le I$ and

$$\operatorname{tr}[M(\mathcal{E}_V(\rho-\sigma))] \ge (1-\varepsilon) \|\rho-\sigma\|_1/2.$$

We extend the techniques of [Winter '04].

- Let *V* be the isometry that was randomly picked, and let \mathcal{E}_V be the corresponding quantum channel implemented.
- In order for it to hold that $\|\mathcal{E}_V(\rho \sigma)\|_1 \ge (1 \epsilon)\|\rho \sigma\|_1$, it suffices to exhibit an operator M with $0 \le M \le I$ and

$$\operatorname{tr}[M(\mathcal{E}_V(\rho-\sigma))] \ge (1-\varepsilon) \|\rho-\sigma\|_1/2.$$

• To find such an operator, expand

$$V(
ho-\sigma)V^{\dagger} = \sum_{i\in S^+}\lambda_i|\psi_i
angle\langle\psi_i| - \sum_{i\in S^-}\mu_i|\psi_i
angle\langle\psi_i|,$$

where λ_i , $\mu_i \ge 0$, and note that $P_V := \sum_{i \in S^+} |\psi_i\rangle \langle \psi_i|$ is the projector onto a random subspace.

• Now take $M = \operatorname{tr}_B P_V$.

• We have

$$\operatorname{tr}[M(\mathcal{E}_{V}(\rho-\sigma))] = \sum_{i\in S^{+}} \lambda_{i} \operatorname{tr}[M \operatorname{tr}_{B} |\psi_{i}\rangle\langle\psi_{i}|] - \sum_{i\in S^{-}} \mu_{i} \operatorname{tr}[M \operatorname{tr}_{B} |\psi_{i}\rangle\langle\psi_{i}|]$$

and want to show that this is high (whp) relative to $\|\rho - \sigma\|_1/2 = \sum_{i \in S^+} \lambda_i$.

• We have

$$\operatorname{tr}[M(\mathcal{E}_{V}(\rho-\sigma))] = \sum_{i\in S^{+}} \lambda_{i} \operatorname{tr}[M \operatorname{tr}_{B} |\psi_{i}\rangle\langle\psi_{i}|] - \sum_{i\in S^{-}} \mu_{i} \operatorname{tr}[M \operatorname{tr}_{B} |\psi_{i}\rangle\langle\psi_{i}|]$$

and want to show that this is high (whp) relative to $\|\rho - \sigma\|_1/2 = \sum_{i \in S^+} \lambda_i$.

- By the definition of *M*, $tr[M tr_B |\psi_i\rangle \langle \psi_i |] = 1$ for all $i \in S^+$.
- What remains is to show that $tr[M tr_B |\psi_i\rangle \langle \psi_i|]$ is small (whp) for all $i \in S^-$.

• We have

$$\operatorname{tr}[M(\mathcal{E}_{V}(\rho-\sigma))] = \sum_{i\in S^{+}} \lambda_{i} \operatorname{tr}[M \operatorname{tr}_{B} |\psi_{i}\rangle\langle\psi_{i}|] - \sum_{i\in S^{-}} \mu_{i} \operatorname{tr}[M \operatorname{tr}_{B} |\psi_{i}\rangle\langle\psi_{i}|]$$

and want to show that this is high (whp) relative to $\|\rho - \sigma\|_1/2 = \sum_{i \in S^+} \lambda_i$.

- By the definition of *M*, $tr[M tr_B |\psi_i\rangle \langle \psi_i |] = 1$ for all $i \in S^+$.
- What remains is to show that tr[*M* tr_{*B*} |ψ_i⟩⟨ψ_i|] is small (whp) for all *i* ∈ S⁻.
- This can be done using concentration of measure ideas: the states |ψ_i⟩, i ∈ S⁻ are random, subject to the constraint tr[P_V|ψ_i⟩⟨ψ_i]] = 0.
- We end up with a bound that works as long as $e^2 \gtrsim rd$.

Using the inequality $||X||_1 \leq \sqrt{e} ||X||_2$ for *e*-dimensional operators *X*, the following result is essentially immediate from the 2-norm lower bound.

Theorem

Let \mathcal{D} be a distribution over quantum channels $\mathcal{E} : \mathcal{B}(\mathbb{C}^d) \to \mathcal{B}(\mathbb{C}^e)$ such that, for fixed quantum states $\rho \neq \sigma$ and for all unitary U,

 $\Pr_{\mathcal{E}\sim\mathcal{D}}[\|\mathcal{E}(U\rho U^{\dagger}) - \mathcal{E}(U\sigma U^{\dagger})\|_{1} \ge (1-\epsilon)\|U\rho U^{\dagger} - U\sigma U^{\dagger}\|_{1}] \ge 1-\delta$

for some $0 \leq \epsilon, \delta \leq 1$. Then $e \geq (1-\delta)(1-\epsilon)\sqrt{d} \frac{\|\rho - \sigma\|_1}{\|\rho - \sigma\|_2}$.

In particular, we have the following corollary which implies that the upper bound is optimal for some sets of states.

Corollary

- Any embedding which preserves trace norm distances between any pair of rank *r* mixed states (up to a constant) must have target dimension $\Omega(\sqrt{rd})$.
- In particular, any embedding which preserves trace norm distances between any pair of *d*-dimensional pure states (up to a constant) must have target dimension Ω(√*d*).

Summary

- Any embedding of a unitarily invariant set of *d*-dimensional quantum states that achieves constant distortion in the 2-norm must have target dimension Ω(*d*).
- In some situations (e.g. when the basis in which the states were prepared is unknown or the measurement apparatus does not depend on the states to be distinguished) the 2-norm is the "right" measure of distinguishability between quantum states.
- *d*-dimensional mixed states with rank *r* can be embedded in $O(\sqrt{rd})$ dimensions with constant distortion in the trace norm.

• There is a gap between our upper and lower bounds for the trace norm. Can it be removed?

- There is a gap between our upper and lower bounds for the trace norm. Can it be removed?
 - Tighter analysis of the embedding used in the upper bound might allow this...

- There is a gap between our upper and lower bounds for the trace norm. Can it be removed?
 - Tighter analysis of the embedding used in the upper bound might allow this...
 - ...possibly at the expense of making the bound more complicated.

- There is a gap between our upper and lower bounds for the trace norm. Can it be removed?
 - Tighter analysis of the embedding used in the upper bound might allow this...
 - ...possibly at the expense of making the bound more complicated.

- What is the situation when we have multiple copies of the input state or additional classical information?
 - For some results in this direction, see [Fawzi, Hayden and Sen '10].

Thanks!

arXiv:1012.2262

