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Dimensionality reduction

High-dimensional data is ubiquitous in computer science.

However, algorithms operating on such data are often
inefficient (e.g. having runtime exponential in the
dimension).

This problem can be mitigated using a result known as
the Johnson-Lindenstrauss Lemma.

JL Lemma
Given a set S of n d-dimensional real vectors, there is a linear
map E : Rd → RO(log n/ε2) that preserves all Euclidean
distances in S, up to a multiple of 1 − ε. Further, there is an
efficient randomised algorithm to find and implement E.
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Dimensionality reduction

The JL Lemma is in fact a corollary of the following result.

JL Lemma
For all dimensions d, e, there is a distribution D over linear maps
E : Rd → Re such that, for all real vectors v, w,

Pr
E∼D

[(1−ε)‖v−w‖2 6 ‖E(v)−E(w)‖2 6 ‖v−w‖2] > 1−exp(−Ω(ε2e)).

Such a distribution D is known as an embedding with
distortion 1/(1 − ε).

Note the following interesting aspects of this result:

The target dimension e does not depend on the source
dimension d at all.
The distribution D does not depend on the vectors whose
dimensionality is to be reduced.
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Uses of the JL Lemma and other norm
embeddings in quantum information theory

[Cleve et al ’04] used the JL Lemma to give an upper bound
on the amount of shared entanglement required to win a
class of nonlocal games.

[Gavinsky, Kempe and de Wolf ’06] used the JL Lemma to
simulate arbitrary quantum communication protocols by
quantum SMP protocols.

[Aubrun, Szarek and Werner ’10] have used a version of
Dvoretzky’s theorem on “almost-Euclidean” subspaces of
matrices under Schatten norms to give counterexamples to
the additivity conjectures of quantum information theory.

[Fawzi, Hayden and Sen ’10] have used embeddings of the
“`1(`2)” norm to prove the existence of strong entropic
uncertainty relations.



Quantum embeddings?

We would like to generalise the JL Lemma to the quantum
world. What should such a generalisation look like?

Classically, an embedding is a distribution over linear
maps which approximately preserves distances between
vectors with high probability.

Analogously, a quantum embedding should be a
distribution over physically implementable operations
which approximately preserves distances between
quantum states with high probability.



Definitions

(Mixed) quantum states are positive semidefinite matrices
with trace 1.

The distance between quantum states ρ, σ can be
measured using the Schatten p-norm

‖ρ− σ‖p =

(∑
i

|λi(ρ− σ)|p

)1/p

,

where λi(X) is the i’th eigenvalue of X. The case p = 1 is
known as the trace norm.

Physically implementable operations in quantum theory
(maps taking quantum states to quantum states) are
known as quantum channels.

A quantum channel is a completely positive,
trace-preserving map from B(d) to B(e) (for some d, e),
where B(d) denotes the set of d-dim. Hermitian matrices.
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Quantum embeddings

Quantum embeddings
A quantum embedding from S ⊆ B(d) to B(e) in the Schatten
p-norm, with distortion 1/(1 − ε) and failure probability δ, is a
distribution D over quantum channels E : B(d)→ B(e) such
that, for all ρ,σ ∈ S,

Pr
E∼D

[
(1 − ε)‖ρ− σ‖p 6 ‖E(ρ) − E(σ)‖p 6 ‖ρ− σ‖p

]
> 1 − δ.

Note that we generalise the definition of classical
embeddings to allow embeddings that only work for
subsets S of quantum states.
We will be particularly interested in unitarily invariant
subsets: sets S where ρ ∈ S implies UρU† ∈ S for all
unitary operators U.
An interesting such subset is the set of all d-dimensional
pure states.
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Results in this talk

1 Quantum dimensionality reduction in the 2-norm is very
limited.

2 Two operational meanings of the 2-norm.

3 Dimensionality reduction in the trace norm: upper and
lower bounds.



Dimensionality reduction in the 2-norm

Theorem
Let D be a distribution over quantum channels
E : B(Cd)→ B(Ce) such that, for fixed quantum states ρ 6= σ

and for all unitary operators U ∈ U(d),

Pr
E∼D

[‖E(UρU†)−E(UσU†)‖2 > (1 −ε)‖UρU†− UσU†‖2] > 1 − δ

for some 0 6 ε, δ 6 1. Then e > (1 − δ)(1 − ε)2d.

Corollary
Any embedding of a unitarily invariant set of states from d to e
dimensions which has constant distortion in the 2-norm and
succeeds with constant probability must satisfy e = Ω(d).



Proof idea

The theorem is essentially immediate from the following

Lemma
Let ρ and σ be quantum states and let E : B(Cd)→ B(Ce) be a
quantum channel. Then∫

‖E(UρU†) − E(UσU†)‖2
2 dU 6

d(e2 − 1)

e(d2 − 1)
‖ρ− σ‖2

2.

The left-hand side of this inequality can be written out
explicitly in terms of the flip (swap) operator F as∫
‖E(UρU†) − E(UσU†)‖2

2 dU =
‖ρ− σ‖2

2
d2 − 1

tr
[

F E⊗2
(

F −
Id2

d

)]
and bounded using a new (?) inequality tr[F E⊗2(F)] 6 de.
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Operational meanings of the 2-norm

How meaningful/useful is it to preserve the 2-norm distance
between quantum states?

The trace distance ‖ρ− σ‖1 between two quantum states ρ
and σ has the following operational interpretation.

Imagine we are given a state promised to be either ρ or σ,
and want to determine which is the case. The optimal
success probability we can achieve is precisely
1
2 + 1

4‖ρ− σ‖1.

It is less obvious that the 2-norm distance ‖ρ− σ‖2 has a
nice operational interpretation, and this distance measure
is usually only used for calculational simplicity.

However, it turns out that there are (at least) two
operational interpretations of this distance measure.
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Equality testing without a reference frame

We are given a description of two different states ρ and σ.
An adversary prepares two systems in one of the states
ρ⊗ ρ, σ⊗ σ, ρ⊗ σ or σ⊗ ρ, with equal probability of each.

He then applies an unknown unitary U to each system
(i.e. he applies U ⊗U to the joint state).

Our task is to determine whether the two systems have
the same state (i.e. were originally ρ⊗ ρ or σ⊗ σ) or
different states.

This models equality testing in a two-party scenario in
which the preparer and tester do not share a reference
frame (local basis).

Theorem
The maximal probability of success is 1

2 + 1
8‖ρ− σ‖2

2.
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State discrimination with a random
measurement

We are given a state which is promised to be either ρ or σ,
with equal probability of each, and we wish to determine
which is the case.
We are allowed to perform a projective measurement in a
random basis (i.e. to apply a random unitary operator and
measure in the computational basis), and have to decide
whether the state is ρ or σ based on the outcome.

Theorem
The expected optimal probability of success p satisfies

1
2

+
1
6
‖ρ− σ‖2 6 p 6

1
2

+
1
2
‖ρ− σ‖2.

The lower bound was originally shown by [Ambainis and Emerson
’07]; also see the proof by [Matthews, Wehner and Winter ’09].
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Dimensionality reduction in the trace norm:
upper bound

The situation in the trace norm is somewhat better.

Theorem
For any pair of rank r quantum states ρ, σ, there is a distrib. D

on quantum channels E : B(Cd)→ B(CO(
√

rd/ε)) such that

Pr
E∼D

[‖E(ρ) − E(σ)‖1 > (1 − ε)‖ρ− σ‖1] > 1 − d exp(−Kεd)

for some universal constant K.

Note that this is in contrast to the classical case, where
dimensionality reduction in the `1 norm is known to be
considerably harder than the `2 norm.
[Winter ’04] had previously shown this theorem for r = 1
(pure states) using essentially the same distribution D.
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Dimensionality reduction in the trace norm:
upper bound

The embedding we will use is conceptually simple: apply
a random unitary and trace out (discard) a subsystem.

However, when the target dimension e doesn’t divide d,
we are forced to consider random isometries instead.

Recall that an isometry is a norm-preserving linear map,
i.e. a map taking an orthonormal basis of one space to an
orthonormal set of vectors in another (potentially larger)
space.

The embedding thus consists of applying a fixed isometry
that maps Cd 7→ Ce ⊗ Cdd/ee, applying a random unitary
operator, and discarding the second subsystem.
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Proof idea
We extend the techniques of [Winter ’04].

Let V be the isometry that was randomly picked, and let
EV be the corresponding quantum channel implemented.

In order for it to hold that ‖EV(ρ− σ)‖1 > (1 − ε)‖ρ− σ‖1,
it suffices to exhibit an operator M with 0 6 M 6 I and

tr[M(EV(ρ− σ))] > (1 − ε)‖ρ− σ‖1/2.

To find such an operator, expand

V(ρ− σ)V† =
∑
i∈S+

λi|ψi〉〈ψi| −
∑
i∈S−

µi|ψi〉〈ψi|,

where λi,µi > 0, and note that PV :=
∑

i∈S+ |ψi〉〈ψi| is the
projector onto a random subspace.

Now take M = trB PV.
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Proof idea

We have

tr[M(EV(ρ−σ))] =
∑
i∈S+

λi tr[M trB |ψi〉〈ψi|]−
∑
i∈S−

µi tr[M trB |ψi〉〈ψi|]

and want to show that this is high (whp) relative to
‖ρ− σ‖1/2 =

∑
i∈S+ λi.

By the definition of M, tr[M trB |ψi〉〈ψi|] = 1 for all i ∈ S+.

What remains is to show that tr[M trB |ψi〉〈ψi|] is small
(whp) for all i ∈ S−.

This can be done using concentration of measure ideas:
the states |ψi〉, i ∈ S− are random, subject to the constraint
tr[PV |ψi〉〈ψi|] = 0.

We end up with a bound that works as long as e2 & rd.



Proof idea

We have

tr[M(EV(ρ−σ))] =
∑
i∈S+

λi tr[M trB |ψi〉〈ψi|]−
∑
i∈S−

µi tr[M trB |ψi〉〈ψi|]

and want to show that this is high (whp) relative to
‖ρ− σ‖1/2 =

∑
i∈S+ λi.

By the definition of M, tr[M trB |ψi〉〈ψi|] = 1 for all i ∈ S+.

What remains is to show that tr[M trB |ψi〉〈ψi|] is small
(whp) for all i ∈ S−.

This can be done using concentration of measure ideas:
the states |ψi〉, i ∈ S− are random, subject to the constraint
tr[PV |ψi〉〈ψi|] = 0.

We end up with a bound that works as long as e2 & rd.



Proof idea

We have

tr[M(EV(ρ−σ))] =
∑
i∈S+

λi tr[M trB |ψi〉〈ψi|]−
∑
i∈S−

µi tr[M trB |ψi〉〈ψi|]

and want to show that this is high (whp) relative to
‖ρ− σ‖1/2 =

∑
i∈S+ λi.

By the definition of M, tr[M trB |ψi〉〈ψi|] = 1 for all i ∈ S+.

What remains is to show that tr[M trB |ψi〉〈ψi|] is small
(whp) for all i ∈ S−.

This can be done using concentration of measure ideas:
the states |ψi〉, i ∈ S− are random, subject to the constraint
tr[PV |ψi〉〈ψi|] = 0.

We end up with a bound that works as long as e2 & rd.



Dimensionality reduction in the trace norm:
lower bound

Using the inequality ‖X‖1 6
√

e‖X‖2 for e-dimensional
operators X, the following result is essentially immediate from
the 2-norm lower bound.

Theorem
Let D be a distribution over quantum channels
E : B(Cd)→ B(Ce) such that, for fixed quantum states ρ 6= σ

and for all unitary U,

Pr
E∼D

[‖E(UρU†)−E(UσU†)‖1 > (1 −ε)‖UρU†− UσU†‖1] > 1 − δ

for some 0 6 ε, δ 6 1. Then e > (1 − δ)(1 − ε)
√

d‖ρ−σ‖1
‖ρ−σ‖2

.



Dimensionality reduction in the trace norm:
lower bound

In particular, we have the following corollary which implies
that the upper bound is optimal for some sets of states.

Corollary
Any embedding which preserves trace norm distances
between any pair of rank r mixed states (up to a constant)
must have target dimension Ω(

√
rd).

In particular, any embedding which preserves trace norm
distances between any pair of d-dimensional pure states
(up to a constant) must have target dimension Ω(

√
d).



Summary

Any embedding of a unitarily invariant set of
d-dimensional quantum states that achieves constant
distortion in the 2-norm must have target dimension Ω(d).

In some situations (e.g. when the basis in which the states
were prepared is unknown or the measurement apparatus
does not depend on the states to be distinguished) the
2-norm is the “right” measure of distinguishability
between quantum states.

d-dimensional mixed states with rank r can be embedded
in O(

√
rd) dimensions with constant distortion in the trace

norm.



Open questions

There is a gap between our upper and lower bounds for
the trace norm. Can it be removed?

Tighter analysis of the embedding used in the upper
bound might allow this...
...possibly at the expense of making the bound more
complicated.

What is the situation when we have multiple copies of the
input state or additional classical information?

For some results in this direction, see [Fawzi, Hayden and
Sen ’10].
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