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Dimensionality reduction

e High-dimensional data is ubiquitous in computer science.

e However, algorithms operating on such data are often
inefficient (e.g. having runtime exponential in the
dimension).

@ This problem can be mitigated using a result known as
the Johnson-Lindenstrauss Lemma.
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JL Lemma

Given a set S of n d-dimensional real vectors, there is a linear
map & : RY — RO(081/€*) that preserves all Euclidean
distances in S, up to a multiple of 1 — €. Further, there is an
efficient randomised algorithm to find and implement €.
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& :R? — R¢ such that, for all real vectors v, w,
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Such a distribution D is known as an embedding with
distortion 1/(1 — €).

Note the following interesting aspects of this result:

@ The target dimension e does not depend on the source
dimension 4 at all.

@ The distribution D does not depend on the vectors whose
dimensionality is to be reduced.



Uses of the JL Lemma and other norm
embeddings in quantum information theory

@ [Cleve et al '04] used the JL Lemma to give an upper bound
on the amount of shared entanglement required to win a
class of nonlocal games.

@ [Gavinsky, Kempe and de Wolf '06] used the JL. Lemma to
simulate arbitrary quantum communication protocols by
quantum SMP protocols.

@ [Aubrun, Szarek and Werner '10] have used a version of
Dvoretzky’s theorem on “almost-Euclidean” subspaces of
matrices under Schatten norms to give counterexamples to
the additivity conjectures of quantum information theory.

@ [Fawzi, Hayden and Sen '10] have used embeddings of the
“f1(£2)” norm to prove the existence of strong entropic
uncertainty relations.



Quantum embeddings?

@ We would like to generalise the JL Lemma to the quantum
world. What should such a generalisation look like?

@ Classically, an embedding is a distribution over linear
maps which approximately preserves distances between
vectors with high probability.

@ Analogously, a quantum embedding should be a
distribution over physically implementable operations
which approximately preserves distances between
quantum states with high probability.
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@ Physically implementable operations in quantum theory
(maps taking quantum states to quantum states) are
known as quantum channels.

@ A quantum channel is a completely positive,
trace-preserving map from B(d) to B(e) (for some d, e),
where B(d) denotes the set of d-dim. Hermitian matrices.
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@ Note that we generalise the definition of classical
embeddings to allow embeddings that only work for
subsets S of quantum states.

@ We will be particularly interested in unitarily invariant
subsets: sets S where p € S implies UpUT € S for all
unitary operators U.

@ An interesting such subset is the set of all d-dimensional
pure states.



Results in this talk

© Quantum dimensionality reduction in the 2-norm is very
limited.

@ Two operational meanings of the 2-norm.

@ Dimensionality reduction in the trace norm: upper and
lower bounds.



Dimensionality reduction in the 2-norm

Theorem

Let D be a distribution over quantum channels
& : B(C?) — B(C?) such that, for fixed quantum states p # o
and for all unitary operators U € U(d),

FPrlleUpt’) —&(Uolh)l2 > (1—e)||UpU’ —UoUT 2] > 13

for some 0 < €,5 < 1. Thene > (1 —58)(1 — e)?d.

Corollary

Any embedding of a unitarily invariant set of states from d to e
dimensions which has constant distortion in the 2-norm and
succeeds with constant probability must satisfy e = Q(d).




Proof idea

The theorem is essentially immediate from the following

Lemma

Let p and o be quantum states and let € : B(C4) — B(C) be a
quantum channel. Then
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The theorem is essentially immediate from the following

Lemma

Let p and o be quantum states and let € : B(C4) — B(C) be a
quantum channel. Then

de*—1

f_ nzau< de =, e
| neweut — equoun gau < £5=l0 - ol

The left-hand side of this inequality can be written out
explicitly in terms of the flip (swap) operator F as

_ol2
JHE(UPUT) —&(UoUM)|3dU = ’22_01”2“ [F8®2 (F IZ;)]

and bounded using a new (?) inequality tr[F £%?(F)] < de.
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@ The trace distance ||p — o||; between two quantum states p
and o has the following operational interpretation.

e Imagine we are given a state promised to be either p or o,
and want to determine which is the case. The optimal
success probability we can achieve is precisely
1,1
2 +alle—olh

e It is less obvious that the 2-norm distance ||p — o||; has a
nice operational interpretation, and this distance measure
is usually only used for calculational simplicity.

@ However, it turns out that there are (at least) two
operational interpretations of this distance measure.
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(i.e. he applies U ® U to the joint state).
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the same state (i.e. were originally p @ p or 0 ® o) or
different states.

@ This models equality testing in a two-party scenario in
which the preparer and tester do not share a reference
frame (local basis).

Theorem

The maximal probability of success is 1 + &||p — o][3.
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@ We are given a state which is promised to be either p or o,
with equal probability of each, and we wish to determine
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@ We are allowed to perform a projective measurement in a
random basis (i.e. to apply a random unitary operator and
measure in the computational basis), and have to decide
whether the state is p or o based on the outcome.
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@ We are given a state which is promised to be either p or o,
with equal probability of each, and we wish to determine
which is the case.

@ We are allowed to perform a projective measurement in a
random basis (i.e. to apply a random unitary operator and
measure in the computational basis), and have to decide
whether the state is p or o based on the outcome.

Theorem

The expected optimal probability of success p satisfies

1—1-1\\ —ol<p<
2 6p 2P

—_

i Lo—al
o TpliP ol

The lower bound was originally shown by [Ambainis and Emerson
'07]; also see the proof by [Matthews, Wehner and Winter "09].
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Theorem
For any pair of rank » quantum states p, o, there is a distrib. D
on quantum channels € : B(C4) — B(COW"/€)) such that
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for some universal constant K.

@ Note that this is in contrast to the classical case, where
dimensionality reduction in the {; norm is known to be
considerably harder than the ¢, norm.

@ [Winter '04] had previously shown this theorem for r =1
(pure states) using essentially the same distribution D.
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@ The embedding we will use is conceptually simple: apply
a random unitary and trace out (discard) a subsystem.

e However, when the target dimension e doesn’t divide d,
we are forced to consider random isometries instead.

@ Recall that an isometry is a norm-preserving linear map,
i.e. a map taking an orthonormal basis of one space to an
orthonormal set of vectors in another (potentially larger)
space.

@ The embedding thus consists of applying a fixed isometry
that maps C¥ — C¢ ® Cl¥/¢l, applying a random unitary
operator, and discarding the second subsystem.
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@ Let V be the isometry that was randomly picked, and let
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@ Let V be the isometry that was randomly picked, and let
Ey be the corresponding quantum channel implemented.

@ In order for it to hold that ||Ey(p — o)l = (1 —¢€)||p — o1,
it suffices to exhibit an operator M with 0 < M < I and

trM(Ey(p —0))] = (1 —¢€)|p — ofl1/2.

@ To find such an operator, expand

Vip—o)Vi= 3 Nhbi) il — D wlbi) (b

ieSt ieS™

where A;, 1; > 0, and note that Py := ) .5+ () (] is the
projector onto a random subspace.

@ Now take M = trg Py.
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Proof idea

@ We have

tr(M(Ev(p—0))] = Z A tr[M trp N)i><11)i|]—z w; tr[M trp [ ;) (W]

ieSt i€eS—

and want to show that this is high (whp) relative to
o —ol1/2=2jcs+ M

@ By the definition of M, tr[M trg [\p;) (] =1 for all i € ST.

@ What remains is to show that tr[M trg \p;) (] is small
(whp) foralli e S—.

@ This can be done using concentration of measure ideas:
the states [\;), i € S~ are random, subject to the constraint

tr[Py ;) (Will = 0.

e We end up with a bound that works as long as > > rd.



Dimensionality reduction in the trace norm:
lower bound

Using the inequality || X||; < v/e||X||» for e-dimensional
operators X, the following result is essentially immediate from
the 2-norm lower bound.

Theorem

Let D be a distribution over quantum channels
& B(C%) — B(C?) such that, for fixed quantum states p # o
and for all unitary U,

FPrleUpU") —&(Uolhr > (1—e)||UpU’ —UoUT|1] > 13

for some 0 < e,8 < 1. Thene > (1 —8)(1 — e)v/ale=cl

lp—oll2




Dimensionality reduction in the trace norm:
lower bound

In particular, we have the following corollary which implies
that the upper bound is optimal for some sets of states.

Corollary

@ Any embedding which preserves trace norm distances
between any pair of rank r mixed states (up to a constant)
must have target dimension Q(v/rd).

@ In particular, any embedding which preserves trace norm
distances between any pair of d-dimensional pure states
(up to a constant) must have target dimension Q(V4d).




Summary

@ Any embedding of a unitarily invariant set of
d-dimensional quantum states that achieves constant
distortion in the 2-norm must have target dimension Q(d).

@ In some situations (e.g. when the basis in which the states
were prepared is unknown or the measurement apparatus
does not depend on the states to be distinguished) the
2-norm is the “right” measure of distinguishability
between quantum states.

@ d-dimensional mixed states with rank r can be embedded
in O(vrd) dimensions with constant distortion in the trace
norm.
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@ There is a gap between our upper and lower bounds for
the trace norm. Can it be removed?
o Tighter analysis of the embedding used in the upper
bound might allow this...
e ..possibly at the expense of making the bound more
complicated.

@ What is the situation when we have multiple copies of the
input state or additional classical information?

e For some results in this direction, see [Fawzi, Hayden and
Sen "10].



Thanks!
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