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Fourier analysis

...traditionally looks like this:

/\/W\/:gx/\/ — A +2x NV

@ Given some function f : R — R...

@ ..we expand it in terms of trigonometric functions sin(kx),
cos(kx)...

@ ..in an attempt to understand the structure of f.
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Fourier analysis

In computer science, it’s natural to consider functions on the
set of n-bit strings — also known as the boolean cube {0, 1}":

@ Given some function f : {0, 1} — R...

@ ..we expand it in terms of parity functions...

@ ..in an attempt to understand the structure of f.



This talk

The classical theory of Fourier analysis on the boolean
cube

A quantum generalisation

Application: Testing for Pauli operators

The qubit depolarising channel

Application: Spectra of k-local operators
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Fourier analysis on the boolean cube

We expand functions f : {0, 1} — R in terms of the parity
functions
Xs(x) = (—1)Zes ¥,

also known as the characters of Zj.

There are 2" of these functions, indexed by subsets
SC{1,..., n}. xs(x) = —1 if the no. of bits of x in S set to 1 is
odd.

Any f : {0, 1} — R has the expansion

f= Z fSXs

for some { jA‘S } — the Fourier coefficients of f.



Applications of Fourier analysis on the
boolean cube

This approach has led to new results in many areas of classical
computer science, including;:

Probabilistically checkable proofs [Héstad ‘01; Dinur ‘07; ... ]

Decision tree complexity [Nisan & Szegedy "94]

@ Influence of voters and fairness of elections [Kahn, Kalai,
Linial '88; Kalai "02]

Computational learning theory [Goldreich & Levin '89;
Kushilevitz & Mansour "91; ... ]

Property testing [Bellare et al "95; Matulef et al 09; ... ]
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The property testing model is defined as follows.

@ We are given access to a boolean function f on n bits as a
black box which we can query on inputs of our choice.
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Property testing
The property testing model is defined as follows.

@ We are given access to a boolean function f on n bits as a
black box which we can query on inputs of our choice.

@ We want to output whether f has some property P, or is
“far” from having property P, using a constant number of
queries.

@ Sample problem: Determine whether f is linear, or “far”
from linear: i.e. differs from all linear functions in a
constant fraction of places.



Applications in quantum computation

There have also been some recent applications of Fourier
analysis to quantum computer science.

@ Quantum algorithms for computational learning
[Bshouty & Jackson “95; Atici & Servedio "07]

@ Quantum communication complexity
[Klauck '01; Gavinsky et al "07]

@ Lower bounds on quantum locally decodable codes
[Ben-Aroya, Regev, de Wolf "08]

@ Quantum algorithms with exponential speed-ups
[Roetteler 08, AM ’08]
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A generalisation of Fourier analysis

We would like to generalise these results to a quantum
(noncommutative) setting.

Why?
@ Because we can: generalisations are generally interesting

@ The classical theory is very successful — maybe a quantum
theory will be too

@ Results in the classical theory become conjectures in the
quantum theory

Our generalisation: instead of decomposing functions
{0, 1} — C, we decompose linear operators on the space of n
qubits.
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It turns out that a natural analogue of the characters of Z, are

the Pauli matrices:
1 0 01 0 —i1 1
0 __ 1_ _ 3 _
0_<0 1>,O'—<1 0>,Gz—<i O),andcf—(O

We write a tensor product of Paulis as
s =01®072®- - ®o", wheres; €{0,1,2,3}.

Any n qubit linear operator f has an expansion

f= Z sts-

s€{0,1,2,3}"

0
-1

for some {f;} — the Pauli coefficients of f. This is our analogue

of the Fourier expansion of a function f : {0, 1} — C.

“Fourier analysis” for qubits

)



Norms and closeness

Some definitions we’ll need later:

@ The (normalised) Schatten p-norm: for any d-dimensional

operator M,
1

N
Y o)
j=1

where {0}} are the singular values of M.

M, =

W

@ Note that || M|, increases with p.



Norms and closeness

Some definitions we’ll need later:

@ The (normalised) Schatten p-norm: for any d-dimensional

operator M,
1

N
Y o)
j=1

where {0}} are the singular values of M.

1Ml =

W

@ Note that || M|, increases with p.

@ With this definition we have a (quantum) Parseval’s
equality:

M=) M
se{0,1,2,3}"



Norms and closeness

Some definitions we’ll need later:

@ The (normalised) Schatten p-norm: for any d-dimensional

operator M,
1

N
Y o)
j=1

where {0}} are the singular values of M.

1Ml =

W

@ Note that || M|, increases with p.

@ With this definition we have a (quantum) Parseval’s
equality:

M=) M
se{0,1,2,3}"

@ Closeness: Let U and V be two linear operators. Then we
say that f and g are e-close if [|[U — V|3 < 4e.
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Quantum property testing

Consider the following representative example:

Pauli testing

Given oracle access to an unknown unitary operator U on n
qubits, determine whether U is a Pauli operator xs for some s.

This problem is a generalisation of classical linearity testing.

We give a test (the quantum Pauli test) that has the following
property.

Proposition

Suppose that a unitary operator U passes the quantum Pauli
test with probability 1 — e. Then U is e-close to a Pauli
operator (with phase) ¢'®xGs.

The test uses 2 queries (best known classical test uses 3).
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pairs |®)®", resulting in a quantum state
) = U @ I|0)®",

@ If U is a Pauli then |u) should be an
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operator.
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Quantum Pauli testing algorithm (sketch)

@ Apply U to the first halves of 1 Bell
pairs |®)®", resulting in a quantum state
) = U @ I|0)®".

@ If U is a Pauli then |u) should be an
n-fold product of one of four possible
states (corresponding to o° ... c%).

© Create two copies of |u).

@ Perform a joint measurement on the two
copies for each of the n qubits to see if
they’re both produced by the same Pauli
operator.

© Accept if all measurements say “yes”.

SevRe
e

It turns out that for the Pauli test Prltest accepts] = ) | U4,
which implies the proposition by Parseval’s equality.
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The Pauli operators and depolarising noise

The Pauli expansion can help us understand the qubit
depolarising channel.

@ Let D, be the qubit depolarising channel with noise rate
1—e¢,ie.

1—¢
De(o) = 1 o)+ cp.
@ Then
D(?n(p) = Z eIS\ Ps Xs-
$€{0,1,2,31n

(this connection goes back at least a decade [Bruss et al '99], and
was used in [Kempe et al ‘08] to give upper bounds on
fault-tolerance thresholds)

We are interested in the smoothing effect of this channel.
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The qubit depolarising channel and p-norms

0.226 lelly
p-norms of a random
quantum state p
increase with p:
0.125 p
0 4
Applying depolarising 0.226 DL 0|4
noise smooths p by /
reducing its higher ]2
norms: 0.125 .
0 1
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Quantum hypercontractivity

Proposition

Let H be a Hermitian operator on n qubits and assume that

1 <p <2< g < oo. Then, provided that e < Z_;i, we have

1D (H) |y < [[Hlp

e This is a quantum generalisation of a hypercontractive
inequality of Bonami, Gross and Beckner for functions
f:{0,1}" — R, which is an essential component in many
results in classical analysis of boolean functions.

@ The quantum proof isn’t a simple generalisation of the
classical proof, but would be if the maximum output
p — g norm were multiplicative!
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Application: Spectra of k-local operators
A Hamiltonian H on n qubits is said to be k-local if it has a

decomposition
H=) H
i

where each H; acts nontrivially on at most k sites.

Our results show that the spectra of k-local operators are
“smooth”. In particular:

e Forany q > 2, |H|, < (9 —1)*2||H||2

o rank(H) > 2" 9% (a quantum Schwartz-Zippel lemma)
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Conclusions

Summary:

@ We've defined a quantum generalisation of the concept of
Fourier analysis on the boolean cube.

@ Many results from the classical theory have natural
quantum analogues.

We still have many open conjectures... such as:

@ Conjecture: There exists an efficient quantum property
tester for dictators.
e Conjecture: Every traceless operator U? = I has an

influential qubit: there is a j such that
[ty U®1/2—U|3 = Q((logn)/n).



The end

Further reading:

@ “Quantum boolean functions”, AM & Tobias Osborne,
arXiv:0810.2435.

@ “Learning and testing algorithms for the Clifford group”,
Richard Low, arXiv:0907.2833.

@ Survey paper by Ronald de Wolf:
http:/ /theoryofcomputing.org/articles /gs001/gs001.pdf

@ Lecture course by Ryan O'Donnell:
http:/ /www.cs.cmu.edu/~odonnell/boolean-analysis/
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Further reading:

@ “Quantum boolean functions”, AM & Tobias Osborne,
arXiv:0810.2435.

@ “Learning and testing algorithms for the Clifford group”,
Richard Low, arXiv:0907.2833.

@ Survey paper by Ronald de Wolf:
http:/ /theoryofcomputing.org/articles /gs001/gs001.pdf

@ Lecture course by Ryan O'Donnell:
http:/ /www.cs.cmu.edu/~odonnell/boolean-analysis/

Thanks for your time!
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Application: A quantum FKN theorem

@ The classical FKN (Friedgut-Kalai-Naor) theorem: Let f be
a boolean function. Then, if }_ 5.1/ < ¢, f is O(¢)-close
to depending on 1 variable (being a dictator).

@ Applications to social choice theory and used as part of a
proof of the PCP theorem [Dinur 07].

@ Proof uses hypercontractivity, and generalises to the
quantum case (fairly) straightforwardly, giving:

Quantum FKN theorem

Let U be a unitary operator on n qubits with eigenvalues +1. If

Y E<e,

[s|>1

then there is a constant K such that U is Ke-close to being a
dictator (acting non-trivially on only 1 qubit) or the identity.

v
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Approximate learning of unitary operators

What does it mean to approximately learn a unitary operator
ur
@ Given some number of uses of U...
e ..output (a classical description of) an approximation [I...
o ..such that I is e-close to U (up to a phase).

A natural dynamical counterpart of recent work on “pretty
good” state tomography [Aaronson '07].

We give a quantum algorithm that outputs the large Pauli
coefficients of U. If U is almost completely determined by
these, this is sufficient to approximately learn U.
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“Quantum Goldreich-Levin” algorithm

Given oracle access to a unitary U, and given vy, 6 > 0, there is
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L ={sy,sy,...,sy} such that with prob. 1 — &: (1) if U] >,
thens e L;and 2)ifs € L, |Us| > v/2.




Computational learning of unitary operators

“Quantum Goldreich-Levin” algorithm

Given oracle access to a unitary U, and given vy, 6 > 0, there is
a poly (n, %) log (£ )-time algorithm which outputs a list

L ={sy,sy,...,sy} such that with prob. 1 — &: (1) if U] > Y,
thens e L;and 2)ifs € L, |Us| > v/2.

Example: learning dynamics of a 1D spin chain. Informally:

Let H be a Hamiltonian corresponding to an n-site spin chain,
and let t = O(logn). Then we can approximately learn the

operators o%(t) = e~ "o with poly(n) uses of ¢,




Computational learning of unitary operators

“Quantum Goldreich-Levin” algorithm

Given oracle access to a unitary U, and given vy, 6 > 0, there is
a poly (n, %) log (£ )-time algorithm which outputs a list

L ={sy,sy,...,sy} such that with prob. 1 — &: (1) if U] >,
thens € L; and (2) if s € L, |Us| > v/2.

Example: learning dynamics of a 1D spin chain. Informally:

Let H be a Hamiltonian corresponding to an n-site spin chain,
and let t = O(logn). Then we can approximately learn the

operators o5(t) = e~ o%e™ with poly(n) uses of ¢,

So we can predict the outcome of measuring o° on site j after a
short time, on average over all input states.





