
Quantum speedup of backtracking and
Monte Carlo algorithms

Ashley Montanaro

School of Mathematics,
University of Bristol

19 February 2016

arXiv:1504.06987 and arXiv:1509.02374
Proc. R. Soc. A 2015 471 20150301

Quantum speedup of classical algorithms

Which general classical algorithmic techniques can we speed
up using a quantum computer?

Some examples:

Unstructured search [Grover ’96]

Probability amplification: boost the success probability of
a randomised algorithm to 99% [Brassard et al. ’02]

Probability estimation: determine the success probability
of a randomised algorithm up to 1% relative error [Brassard
et al. ’02]

Simulated annealing [Somma et al. ’07]

In all of these cases, there are quantum algorithms which
achieve quadratic speedups over the corresponding classical
algorithm.

Quantum speedup of classical algorithms

Which general classical algorithmic techniques can we speed
up using a quantum computer?

Some examples:

Unstructured search [Grover ’96]

Probability amplification: boost the success probability of
a randomised algorithm to 99% [Brassard et al. ’02]

Probability estimation: determine the success probability
of a randomised algorithm up to 1% relative error [Brassard
et al. ’02]

Simulated annealing [Somma et al. ’07]

In all of these cases, there are quantum algorithms which
achieve quadratic speedups over the corresponding classical
algorithm.

Quantum speedup of classical algorithms

Which general classical algorithmic techniques can we speed
up using a quantum computer?

Some examples:

Unstructured search [Grover ’96]

Probability amplification: boost the success probability of
a randomised algorithm to 99% [Brassard et al. ’02]

Probability estimation: determine the success probability
of a randomised algorithm up to 1% relative error [Brassard
et al. ’02]

Simulated annealing [Somma et al. ’07]

In all of these cases, there are quantum algorithms which
achieve quadratic speedups over the corresponding classical
algorithm.

Quantum speedup of classical algorithms

Which general classical algorithmic techniques can we speed
up using a quantum computer?

Some examples:

Unstructured search [Grover ’96]

Probability amplification: boost the success probability of
a randomised algorithm to 99% [Brassard et al. ’02]

Probability estimation: determine the success probability
of a randomised algorithm up to 1% relative error [Brassard
et al. ’02]

Simulated annealing [Somma et al. ’07]

In all of these cases, there are quantum algorithms which
achieve quadratic speedups over the corresponding classical
algorithm.

Quantum speedup of classical algorithms

Which general classical algorithmic techniques can we speed
up using a quantum computer?

Some examples:

Unstructured search [Grover ’96]

Probability amplification: boost the success probability of
a randomised algorithm to 99% [Brassard et al. ’02]

Probability estimation: determine the success probability
of a randomised algorithm up to 1% relative error [Brassard
et al. ’02]

Simulated annealing [Somma et al. ’07]

In all of these cases, there are quantum algorithms which
achieve quadratic speedups over the corresponding classical
algorithm.

Quantum speedup of classical algorithms

Which general classical algorithmic techniques can we speed
up using a quantum computer?

Some examples:

Unstructured search [Grover ’96]

Probability amplification: boost the success probability of
a randomised algorithm to 99% [Brassard et al. ’02]

Probability estimation: determine the success probability
of a randomised algorithm up to 1% relative error [Brassard
et al. ’02]

Simulated annealing [Somma et al. ’07]

In all of these cases, there are quantum algorithms which
achieve quadratic speedups over the corresponding classical
algorithm.

Today’s talk

Two other standard classical algorithmic techniques which can
be accelerated by quantum algorithms:

Backtracking: a standard method for solving constraint
satisfaction problems
Approximating the mean of a random variable with
bounded variance: the core of Monte Carlo methods

In both cases, we obtain quadratic quantum speedups.

The quantum algorithms use different techniques:

The backtracking algorithm uses quantum walks, based
on an algorithm of [Belovs ’13].
The mean-approximation algorithm uses amplitude
amplification, based on ideas of [Heinrich ’01].

Today’s talk

Two other standard classical algorithmic techniques which can
be accelerated by quantum algorithms:

Backtracking: a standard method for solving constraint
satisfaction problems

Approximating the mean of a random variable with
bounded variance: the core of Monte Carlo methods

In both cases, we obtain quadratic quantum speedups.

The quantum algorithms use different techniques:

The backtracking algorithm uses quantum walks, based
on an algorithm of [Belovs ’13].
The mean-approximation algorithm uses amplitude
amplification, based on ideas of [Heinrich ’01].

Today’s talk

Two other standard classical algorithmic techniques which can
be accelerated by quantum algorithms:

Backtracking: a standard method for solving constraint
satisfaction problems
Approximating the mean of a random variable with
bounded variance: the core of Monte Carlo methods

In both cases, we obtain quadratic quantum speedups.

The quantum algorithms use different techniques:

The backtracking algorithm uses quantum walks, based
on an algorithm of [Belovs ’13].
The mean-approximation algorithm uses amplitude
amplification, based on ideas of [Heinrich ’01].

Today’s talk

Two other standard classical algorithmic techniques which can
be accelerated by quantum algorithms:

Backtracking: a standard method for solving constraint
satisfaction problems
Approximating the mean of a random variable with
bounded variance: the core of Monte Carlo methods

In both cases, we obtain quadratic quantum speedups.

The quantum algorithms use different techniques:

The backtracking algorithm uses quantum walks, based
on an algorithm of [Belovs ’13].
The mean-approximation algorithm uses amplitude
amplification, based on ideas of [Heinrich ’01].

Today’s talk

Two other standard classical algorithmic techniques which can
be accelerated by quantum algorithms:

Backtracking: a standard method for solving constraint
satisfaction problems
Approximating the mean of a random variable with
bounded variance: the core of Monte Carlo methods

In both cases, we obtain quadratic quantum speedups.

The quantum algorithms use different techniques:

The backtracking algorithm uses quantum walks, based
on an algorithm of [Belovs ’13].
The mean-approximation algorithm uses amplitude
amplification, based on ideas of [Heinrich ’01].

Constraint satisfaction problems

Backtracking is a general approach to solve constraint
satisfaction problems (CSPs).

An instance of a CSP on n variables x1, . . . , xn is specified
by a sequence of constraints, all of which must be satisfied
by the variables.

We might want to find one assignment to x1, . . . , xn that
satisfies all the constraints, or list all such assignments.

For many CSPs, the best algorithms known for either task
have exponential runtime in n.

A simple example: graph 3-colouring.

Constraint satisfaction problems

Backtracking is a general approach to solve constraint
satisfaction problems (CSPs).

An instance of a CSP on n variables x1, . . . , xn is specified
by a sequence of constraints, all of which must be satisfied
by the variables.

We might want to find one assignment to x1, . . . , xn that
satisfies all the constraints, or list all such assignments.

For many CSPs, the best algorithms known for either task
have exponential runtime in n.

A simple example: graph 3-colouring.

Constraint satisfaction problems

Backtracking is a general approach to solve constraint
satisfaction problems (CSPs).

An instance of a CSP on n variables x1, . . . , xn is specified
by a sequence of constraints, all of which must be satisfied
by the variables.

We might want to find one assignment to x1, . . . , xn that
satisfies all the constraints, or list all such assignments.

For many CSPs, the best algorithms known for either task
have exponential runtime in n.

A simple example: graph 3-colouring.

Constraint satisfaction problems

Backtracking is a general approach to solve constraint
satisfaction problems (CSPs).

An instance of a CSP on n variables x1, . . . , xn is specified
by a sequence of constraints, all of which must be satisfied
by the variables.

We might want to find one assignment to x1, . . . , xn that
satisfies all the constraints, or list all such assignments.

For many CSPs, the best algorithms known for either task
have exponential runtime in n.

A simple example: graph 3-colouring.

Constraint satisfaction problems

Backtracking is a general approach to solve constraint
satisfaction problems (CSPs).

An instance of a CSP on n variables x1, . . . , xn is specified
by a sequence of constraints, all of which must be satisfied
by the variables.

We might want to find one assignment to x1, . . . , xn that
satisfies all the constraints, or list all such assignments.

For many CSPs, the best algorithms known for either task
have exponential runtime in n.

A simple example: graph 3-colouring.

Constraint satisfaction problems

Backtracking is a general approach to solve constraint
satisfaction problems (CSPs).

An instance of a CSP on n variables x1, . . . , xn is specified
by a sequence of constraints, all of which must be satisfied
by the variables.

We might want to find one assignment to x1, . . . , xn that
satisfies all the constraints, or list all such assignments.

For many CSPs, the best algorithms known for either task
have exponential runtime in n.

A simple example: graph 3-colouring.

Colouring by trial and error

Colouring by trial and error

Colouring by trial and error

Colouring by trial and error

Colouring by trial and error

Colouring by trial and error

Colouring by trial and error

General backtracking framework

This idea, known as backtracking, can be applied to any CSP,
given the following assumptions:

We have a problem on n variables, each picked from
[d] := {0, . . . , d − 1}. Write D := ([d] ∪ {∗})n for the set of
partial assignments, where ∗ means “not assigned yet”.

We have access to a predicate

P : D→ {true, false, indeterminate}

which tells us the status of a partial assignment.

We have access to a heuristic

h : D→ {1, . . . ,n}

which determines which variable to choose next, for a
given partial assignment.

General backtracking framework

This idea, known as backtracking, can be applied to any CSP,
given the following assumptions:

We have a problem on n variables, each picked from
[d] := {0, . . . , d − 1}. Write D := ([d] ∪ {∗})n for the set of
partial assignments, where ∗ means “not assigned yet”.

We have access to a predicate

P : D→ {true, false, indeterminate}

which tells us the status of a partial assignment.

We have access to a heuristic

h : D→ {1, . . . ,n}

which determines which variable to choose next, for a
given partial assignment.

General backtracking framework

This idea, known as backtracking, can be applied to any CSP,
given the following assumptions:

We have a problem on n variables, each picked from
[d] := {0, . . . , d − 1}. Write D := ([d] ∪ {∗})n for the set of
partial assignments, where ∗ means “not assigned yet”.

We have access to a predicate

P : D→ {true, false, indeterminate}

which tells us the status of a partial assignment.

We have access to a heuristic

h : D→ {1, . . . ,n}

which determines which variable to choose next, for a
given partial assignment.

Main result [AM ’15]

Theorem
Let T be the number of vertices in the backtracking tree. Then
there is a bounded-error quantum algorithm which evaluates
P and h O(

√
Tn3/2 log n) times each, and outputs x such that

P(x) is true, or “not found” if no such x exists.

If we are promised that there exists a unique x0 such that P(x0)
is true, this is improved to O(

√
Tn log3 n).

In both cases the algorithm uses poly(n) space and poly(n)
auxiliary quantum gates per use of P and h.

The algorithm can be modified to find all solutions by
striking out previously seen solutions.
We usually think of T as being exponentially large in n. In
this regime, this is a near-quadratic separation.
Note that the algorithm does not need to know T.

Main result [AM ’15]

Theorem
Let T be the number of vertices in the backtracking tree. Then
there is a bounded-error quantum algorithm which evaluates
P and h O(

√
Tn3/2 log n) times each, and outputs x such that

P(x) is true, or “not found” if no such x exists.

If we are promised that there exists a unique x0 such that P(x0)
is true, this is improved to O(

√
Tn log3 n).

In both cases the algorithm uses poly(n) space and poly(n)
auxiliary quantum gates per use of P and h.

The algorithm can be modified to find all solutions by
striking out previously seen solutions.
We usually think of T as being exponentially large in n. In
this regime, this is a near-quadratic separation.
Note that the algorithm does not need to know T.

Main result [AM ’15]

Theorem
Let T be the number of vertices in the backtracking tree. Then
there is a bounded-error quantum algorithm which evaluates
P and h O(

√
Tn3/2 log n) times each, and outputs x such that

P(x) is true, or “not found” if no such x exists.

If we are promised that there exists a unique x0 such that P(x0)
is true, this is improved to O(

√
Tn log3 n).

In both cases the algorithm uses poly(n) space and poly(n)
auxiliary quantum gates per use of P and h.

The algorithm can be modified to find all solutions by
striking out previously seen solutions.

We usually think of T as being exponentially large in n. In
this regime, this is a near-quadratic separation.
Note that the algorithm does not need to know T.

Main result [AM ’15]

Theorem
Let T be the number of vertices in the backtracking tree. Then
there is a bounded-error quantum algorithm which evaluates
P and h O(

√
Tn3/2 log n) times each, and outputs x such that

P(x) is true, or “not found” if no such x exists.

If we are promised that there exists a unique x0 such that P(x0)
is true, this is improved to O(

√
Tn log3 n).

In both cases the algorithm uses poly(n) space and poly(n)
auxiliary quantum gates per use of P and h.

The algorithm can be modified to find all solutions by
striking out previously seen solutions.
We usually think of T as being exponentially large in n. In
this regime, this is a near-quadratic separation.

Note that the algorithm does not need to know T.

Main result [AM ’15]

Theorem
Let T be the number of vertices in the backtracking tree. Then
there is a bounded-error quantum algorithm which evaluates
P and h O(

√
Tn3/2 log n) times each, and outputs x such that

P(x) is true, or “not found” if no such x exists.

If we are promised that there exists a unique x0 such that P(x0)
is true, this is improved to O(

√
Tn log3 n).

In both cases the algorithm uses poly(n) space and poly(n)
auxiliary quantum gates per use of P and h.

The algorithm can be modified to find all solutions by
striking out previously seen solutions.
We usually think of T as being exponentially large in n. In
this regime, this is a near-quadratic separation.
Note that the algorithm does not need to know T.

Previous work

Some previous works have developed quantum algorithms
related to backtracking:

[Cerf, Grover and Williams ’00] developed a quantum
algorithm for constraint satisfaction problems, based on a
nested version of Grover search. This can be seen as a
quantum version of one particular backtracking algorithm
that runs quadratically faster.

[Farhi and Gutmann ’98] used continuous-time quantum
walks to find solutions in backtracking trees. They
showed that, for some trees, the quantum walk can find a
solution exponentially faster than a classical random walk.

By contrast, the algorithm presented here achieves a (nearly)
quadratic separation for all trees.

Previous work

Some previous works have developed quantum algorithms
related to backtracking:

[Cerf, Grover and Williams ’00] developed a quantum
algorithm for constraint satisfaction problems, based on a
nested version of Grover search. This can be seen as a
quantum version of one particular backtracking algorithm
that runs quadratically faster.

[Farhi and Gutmann ’98] used continuous-time quantum
walks to find solutions in backtracking trees. They
showed that, for some trees, the quantum walk can find a
solution exponentially faster than a classical random walk.

By contrast, the algorithm presented here achieves a (nearly)
quadratic separation for all trees.

Previous work

Some previous works have developed quantum algorithms
related to backtracking:

[Cerf, Grover and Williams ’00] developed a quantum
algorithm for constraint satisfaction problems, based on a
nested version of Grover search. This can be seen as a
quantum version of one particular backtracking algorithm
that runs quadratically faster.

[Farhi and Gutmann ’98] used continuous-time quantum
walks to find solutions in backtracking trees. They
showed that, for some trees, the quantum walk can find a
solution exponentially faster than a classical random walk.

By contrast, the algorithm presented here achieves a (nearly)
quadratic separation for all trees.

Search in the backtracking tree

Idea: Use quantum search to find a solution (“marked vertex”)
in the tree produced by the backtracking algorithm.

Many works have studied quantum search in various graphs,
e.g. [Szegedy ’04], [Aaronson and Ambainis ’05], [Magniez et al. ’11] . . .

But here there are some difficulties:
The graph is not known in advance, and is determined by
the backtracking algorithm.
We start at the root of the tree, not in the stationary
distribution of a random walk on the graph.

These can be overcome using work of [Belovs ’13] relating
quantum walks to effective resistance in an electrical network.

Search in the backtracking tree

Idea: Use quantum search to find a solution (“marked vertex”)
in the tree produced by the backtracking algorithm.

Many works have studied quantum search in various graphs,
e.g. [Szegedy ’04], [Aaronson and Ambainis ’05], [Magniez et al. ’11] . . .

But here there are some difficulties:
The graph is not known in advance, and is determined by
the backtracking algorithm.
We start at the root of the tree, not in the stationary
distribution of a random walk on the graph.

These can be overcome using work of [Belovs ’13] relating
quantum walks to effective resistance in an electrical network.

Search in the backtracking tree

Idea: Use quantum search to find a solution (“marked vertex”)
in the tree produced by the backtracking algorithm.

Many works have studied quantum search in various graphs,
e.g. [Szegedy ’04], [Aaronson and Ambainis ’05], [Magniez et al. ’11] . . .

But here there are some difficulties:
The graph is not known in advance, and is determined by
the backtracking algorithm.

We start at the root of the tree, not in the stationary
distribution of a random walk on the graph.

These can be overcome using work of [Belovs ’13] relating
quantum walks to effective resistance in an electrical network.

Search in the backtracking tree

Idea: Use quantum search to find a solution (“marked vertex”)
in the tree produced by the backtracking algorithm.

Many works have studied quantum search in various graphs,
e.g. [Szegedy ’04], [Aaronson and Ambainis ’05], [Magniez et al. ’11] . . .

But here there are some difficulties:
The graph is not known in advance, and is determined by
the backtracking algorithm.
We start at the root of the tree, not in the stationary
distribution of a random walk on the graph.

These can be overcome using work of [Belovs ’13] relating
quantum walks to effective resistance in an electrical network.

Search in the backtracking tree

Idea: Use quantum search to find a solution (“marked vertex”)
in the tree produced by the backtracking algorithm.

Many works have studied quantum search in various graphs,
e.g. [Szegedy ’04], [Aaronson and Ambainis ’05], [Magniez et al. ’11] . . .

But here there are some difficulties:
The graph is not known in advance, and is determined by
the backtracking algorithm.
We start at the root of the tree, not in the stationary
distribution of a random walk on the graph.

These can be overcome using work of [Belovs ’13] relating
quantum walks to effective resistance in an electrical network.

Search by quantum walk (sketch)

We apply phase estimation to a quantum walk starting at the
root, with precision O(1/

√
Tn), where n is an upper bound on

the depth of the tree, and output “solution exists” if the
eigenvalue is 1, and “no solution” otherwise.

Claim (special case of [Belovs ’13])
This procedure succeeds with probability O(1).

So we can detect the existence of a solution with O(
√

Tn)
quantum walk steps.
Each quantum walk step can be implemented with O(1)
uses of P and h.
We can also find a solution using binary search with a
small overhead.

Search by quantum walk (sketch)

We apply phase estimation to a quantum walk starting at the
root, with precision O(1/

√
Tn), where n is an upper bound on

the depth of the tree, and output “solution exists” if the
eigenvalue is 1, and “no solution” otherwise.

Claim (special case of [Belovs ’13])
This procedure succeeds with probability O(1).

So we can detect the existence of a solution with O(
√

Tn)
quantum walk steps.
Each quantum walk step can be implemented with O(1)
uses of P and h.
We can also find a solution using binary search with a
small overhead.

Search by quantum walk (sketch)

We apply phase estimation to a quantum walk starting at the
root, with precision O(1/

√
Tn), where n is an upper bound on

the depth of the tree, and output “solution exists” if the
eigenvalue is 1, and “no solution” otherwise.

Claim (special case of [Belovs ’13])
This procedure succeeds with probability O(1).

So we can detect the existence of a solution with O(
√

Tn)
quantum walk steps.

Each quantum walk step can be implemented with O(1)
uses of P and h.
We can also find a solution using binary search with a
small overhead.

Search by quantum walk (sketch)

We apply phase estimation to a quantum walk starting at the
root, with precision O(1/

√
Tn), where n is an upper bound on

the depth of the tree, and output “solution exists” if the
eigenvalue is 1, and “no solution” otherwise.

Claim (special case of [Belovs ’13])
This procedure succeeds with probability O(1).

So we can detect the existence of a solution with O(
√

Tn)
quantum walk steps.
Each quantum walk step can be implemented with O(1)
uses of P and h.

We can also find a solution using binary search with a
small overhead.

Search by quantum walk (sketch)

We apply phase estimation to a quantum walk starting at the
root, with precision O(1/

√
Tn), where n is an upper bound on

the depth of the tree, and output “solution exists” if the
eigenvalue is 1, and “no solution” otherwise.

Claim (special case of [Belovs ’13])
This procedure succeeds with probability O(1).

So we can detect the existence of a solution with O(
√

Tn)
quantum walk steps.
Each quantum walk step can be implemented with O(1)
uses of P and h.
We can also find a solution using binary search with a
small overhead.

Part 2: Monte Carlo methods
Monte Carlo methods use randomness to estimate numerical
properties of systems which are too large or complicated to
analyse deterministically.

Pic: Wikipedia

Part 2: Monte Carlo methods
Monte Carlo methods use randomness to estimate numerical
properties of systems which are too large or complicated to
analyse deterministically.

Pic: Wikipedia

These methods are used throughout science and engineering:

. . . and were an application of the first electronic computers:

Pic: Wikipedia

Monte Carlo methods

The basic core of many Monte Carlo methods is:

General problem
Given access to a randomised algorithm A, estimate the
expected output value µ of A.

The input is fixed, and the expectation is taken over the
internal randomness of A.

The output value v(A) is a real-valued random variable.

We assume that we know an upper bound on the variance of
this random variable:

Var(v(A)) 6 σ2.

Monte Carlo methods

The basic core of many Monte Carlo methods is:

General problem
Given access to a randomised algorithm A, estimate the
expected output value µ of A.

The input is fixed, and the expectation is taken over the
internal randomness of A.

The output value v(A) is a real-valued random variable.

We assume that we know an upper bound on the variance of
this random variable:

Var(v(A)) 6 σ2.

Monte Carlo methods

The basic core of many Monte Carlo methods is:

General problem
Given access to a randomised algorithm A, estimate the
expected output value µ of A.

The input is fixed, and the expectation is taken over the
internal randomness of A.

The output value v(A) is a real-valued random variable.

We assume that we know an upper bound on the variance of
this random variable:

Var(v(A)) 6 σ2.

Classical algorithm

The following natural algorithm solves this problem for any A:

1 Produce k samples v1, . . . , vk, each corresponding to the
output of an independent execution of A.

2 Output the average µ̃ = 1
k
∑k

i=1 vi of the samples as an
approximation of µ.

Assuming that the variance of v(A) is at most σ2,

Pr[|µ̃− µ| > ε] 6
σ2

kε2 .

So we can take k = O(σ2/ε2) to estimate µ up to additive error
ε with, say, 99% success probability.

This scaling is optimal for classical algorithms [Dagum et al. ’00].

Classical algorithm

The following natural algorithm solves this problem for any A:

1 Produce k samples v1, . . . , vk, each corresponding to the
output of an independent execution of A.

2 Output the average µ̃ = 1
k
∑k

i=1 vi of the samples as an
approximation of µ.

Assuming that the variance of v(A) is at most σ2,

Pr[|µ̃− µ| > ε] 6
σ2

kε2 .

So we can take k = O(σ2/ε2) to estimate µ up to additive error
ε with, say, 99% success probability.

This scaling is optimal for classical algorithms [Dagum et al. ’00].

Classical algorithm

The following natural algorithm solves this problem for any A:

1 Produce k samples v1, . . . , vk, each corresponding to the
output of an independent execution of A.

2 Output the average µ̃ = 1
k
∑k

i=1 vi of the samples as an
approximation of µ.

Assuming that the variance of v(A) is at most σ2,

Pr[|µ̃− µ| > ε] 6
σ2

kε2 .

So we can take k = O(σ2/ε2) to estimate µ up to additive error
ε with, say, 99% success probability.

This scaling is optimal for classical algorithms [Dagum et al. ’00].

Classical algorithm

The following natural algorithm solves this problem for any A:

1 Produce k samples v1, . . . , vk, each corresponding to the
output of an independent execution of A.

2 Output the average µ̃ = 1
k
∑k

i=1 vi of the samples as an
approximation of µ.

Assuming that the variance of v(A) is at most σ2,

Pr[|µ̃− µ| > ε] 6
σ2

kε2 .

So we can take k = O(σ2/ε2) to estimate µ up to additive error
ε with, say, 99% success probability.

This scaling is optimal for classical algorithms [Dagum et al. ’00].

Quantum speedup

With a quantum computer, we can do better:

Theorem [AM ’15]

There is a quantum algorithm which estimates µ up to
additive error ε with 99% success probability and

Õ(σ/ε)

uses of A (and A−1).

The Õ notation hides polylog factors: more precisely, the
complexity is O((σ/ε) log3/2(σ/ε) log log(σ/ε)).

This complexity is optimal up to these polylog factors
[Nayak and Wu ’98].

The underlying algorithm A can now be quantum itself.

Quantum speedup

With a quantum computer, we can do better:

Theorem [AM ’15]

There is a quantum algorithm which estimates µ up to
additive error ε with 99% success probability and

Õ(σ/ε)

uses of A (and A−1).

The Õ notation hides polylog factors: more precisely, the
complexity is O((σ/ε) log3/2(σ/ε) log log(σ/ε)).

This complexity is optimal up to these polylog factors
[Nayak and Wu ’98].

The underlying algorithm A can now be quantum itself.

Quantum speedup

With a quantum computer, we can do better:

Theorem [AM ’15]

There is a quantum algorithm which estimates µ up to
additive error ε with 99% success probability and

Õ(σ/ε)

uses of A (and A−1).

The Õ notation hides polylog factors: more precisely, the
complexity is O((σ/ε) log3/2(σ/ε) log log(σ/ε)).

This complexity is optimal up to these polylog factors
[Nayak and Wu ’98].

The underlying algorithm A can now be quantum itself.

Quantum speedup

With a quantum computer, we can do better:

Theorem [AM ’15]

There is a quantum algorithm which estimates µ up to
additive error ε with 99% success probability and

Õ(σ/ε)

uses of A (and A−1).

The Õ notation hides polylog factors: more precisely, the
complexity is O((σ/ε) log3/2(σ/ε) log log(σ/ε)).

This complexity is optimal up to these polylog factors
[Nayak and Wu ’98].

The underlying algorithm A can now be quantum itself.

Related work

This problem connects to several previous works, e.g.:

Approximating the mean of an arbitrary bounded
function (with range [0, 1]), with respect to the uniform
distribution. Quantum complexity: O(1/ε) [Heinrich ’01],
[Brassard et al. ’11].

Estimating the expected value tr(Aρ) of certain
observables A which are bounded [Wocjan et al. ’09], or
whose tails decay quickly [Knill, Ortiz and Somma ’07].

Approximating the mean, with respect to the uniform
distribution, of functions with bounded L2 norm [Heinrich
’01]

Here we generalise these by approximating the mean output
value of arbitrary quantum algorithms, given only a bound on
the variance.

Related work

This problem connects to several previous works, e.g.:

Approximating the mean of an arbitrary bounded
function (with range [0, 1]), with respect to the uniform
distribution. Quantum complexity: O(1/ε) [Heinrich ’01],
[Brassard et al. ’11].

Estimating the expected value tr(Aρ) of certain
observables A which are bounded [Wocjan et al. ’09], or
whose tails decay quickly [Knill, Ortiz and Somma ’07].

Approximating the mean, with respect to the uniform
distribution, of functions with bounded L2 norm [Heinrich
’01]

Here we generalise these by approximating the mean output
value of arbitrary quantum algorithms, given only a bound on
the variance.

Related work

This problem connects to several previous works, e.g.:

Approximating the mean of an arbitrary bounded
function (with range [0, 1]), with respect to the uniform
distribution. Quantum complexity: O(1/ε) [Heinrich ’01],
[Brassard et al. ’11].

Estimating the expected value tr(Aρ) of certain
observables A which are bounded [Wocjan et al. ’09], or
whose tails decay quickly [Knill, Ortiz and Somma ’07].

Approximating the mean, with respect to the uniform
distribution, of functions with bounded L2 norm [Heinrich
’01]

Here we generalise these by approximating the mean output
value of arbitrary quantum algorithms, given only a bound on
the variance.

Related work

This problem connects to several previous works, e.g.:

Approximating the mean of an arbitrary bounded
function (with range [0, 1]), with respect to the uniform
distribution. Quantum complexity: O(1/ε) [Heinrich ’01],
[Brassard et al. ’11].

Estimating the expected value tr(Aρ) of certain
observables A which are bounded [Wocjan et al. ’09], or
whose tails decay quickly [Knill, Ortiz and Somma ’07].

Approximating the mean, with respect to the uniform
distribution, of functions with bounded L2 norm [Heinrich
’01]

Here we generalise these by approximating the mean output
value of arbitrary quantum algorithms, given only a bound on
the variance.

Ideas behind the algorithm

The algorithm combines and extends ideas of [Heinrich ’01],
[Brassard et al. ’11], [Wocjan et al. ’09].

A sketch of the argument:

If we know that the output of A is bounded in [0, 1], we
can use amplitude estimation to approximate µ up to ε,
using A (and A−1) O(1/ε) times.

So divide up the output values of A into blocks of
exponentially increasing distance from µ.

Rescale and shift the values in each block to be bounded
in [0, 1]. Then use amplitude estimation to estimate the
average output value in each block.

Sum up the results (after rescaling them again).

This works because, if the variance of A is low, output values
far from µ do not contribute much to µ, so can be estimated
with lower precision.

Ideas behind the algorithm

The algorithm combines and extends ideas of [Heinrich ’01],
[Brassard et al. ’11], [Wocjan et al. ’09]. A sketch of the argument:

If we know that the output of A is bounded in [0, 1], we
can use amplitude estimation to approximate µ up to ε,
using A (and A−1) O(1/ε) times.

So divide up the output values of A into blocks of
exponentially increasing distance from µ.

Rescale and shift the values in each block to be bounded
in [0, 1]. Then use amplitude estimation to estimate the
average output value in each block.

Sum up the results (after rescaling them again).

This works because, if the variance of A is low, output values
far from µ do not contribute much to µ, so can be estimated
with lower precision.

Ideas behind the algorithm

The algorithm combines and extends ideas of [Heinrich ’01],
[Brassard et al. ’11], [Wocjan et al. ’09]. A sketch of the argument:

If we know that the output of A is bounded in [0, 1], we
can use amplitude estimation to approximate µ up to ε,
using A (and A−1) O(1/ε) times.

So divide up the output values of A into blocks of
exponentially increasing distance from µ.

Rescale and shift the values in each block to be bounded
in [0, 1]. Then use amplitude estimation to estimate the
average output value in each block.

Sum up the results (after rescaling them again).

This works because, if the variance of A is low, output values
far from µ do not contribute much to µ, so can be estimated
with lower precision.

Ideas behind the algorithm

The algorithm combines and extends ideas of [Heinrich ’01],
[Brassard et al. ’11], [Wocjan et al. ’09]. A sketch of the argument:

If we know that the output of A is bounded in [0, 1], we
can use amplitude estimation to approximate µ up to ε,
using A (and A−1) O(1/ε) times.

So divide up the output values of A into blocks of
exponentially increasing distance from µ.

Rescale and shift the values in each block to be bounded
in [0, 1]. Then use amplitude estimation to estimate the
average output value in each block.

Sum up the results (after rescaling them again).

This works because, if the variance of A is low, output values
far from µ do not contribute much to µ, so can be estimated
with lower precision.

Ideas behind the algorithm

The algorithm combines and extends ideas of [Heinrich ’01],
[Brassard et al. ’11], [Wocjan et al. ’09]. A sketch of the argument:

If we know that the output of A is bounded in [0, 1], we
can use amplitude estimation to approximate µ up to ε,
using A (and A−1) O(1/ε) times.

So divide up the output values of A into blocks of
exponentially increasing distance from µ.

Rescale and shift the values in each block to be bounded
in [0, 1]. Then use amplitude estimation to estimate the
average output value in each block.

Sum up the results (after rescaling them again).

This works because, if the variance of A is low, output values
far from µ do not contribute much to µ, so can be estimated
with lower precision.

Ideas behind the algorithm

The algorithm combines and extends ideas of [Heinrich ’01],
[Brassard et al. ’11], [Wocjan et al. ’09]. A sketch of the argument:

If we know that the output of A is bounded in [0, 1], we
can use amplitude estimation to approximate µ up to ε,
using A (and A−1) O(1/ε) times.

So divide up the output values of A into blocks of
exponentially increasing distance from µ.

Rescale and shift the values in each block to be bounded
in [0, 1]. Then use amplitude estimation to estimate the
average output value in each block.

Sum up the results (after rescaling them again).

This works because, if the variance of A is low, output values
far from µ do not contribute much to µ, so can be estimated
with lower precision.

Application: partition functions

Consider a (classical) physical system which has state space Ω,
and a Hamiltonian H : Ω→ R specifying the energy of each
configuration x ∈ Ω. Assume that H takes integer values in the
set {0, . . . ,n}.

We want to compute the partition function

Z(β) =
∑
x∈Ω

e−βH(x)

for some inverse temperature β.

Encapsulates some interesting problems:
Physics: The Ising and Potts models
Computer science: counting k-colourings of graphs,
counting matchings (monomer-dimer coverings), . . .

Application: partition functions

Consider a (classical) physical system which has state space Ω,
and a Hamiltonian H : Ω→ R specifying the energy of each
configuration x ∈ Ω. Assume that H takes integer values in the
set {0, . . . ,n}.

We want to compute the partition function

Z(β) =
∑
x∈Ω

e−βH(x)

for some inverse temperature β.

Encapsulates some interesting problems:
Physics: The Ising and Potts models
Computer science: counting k-colourings of graphs,
counting matchings (monomer-dimer coverings), . . .

Application: partition functions

Consider a (classical) physical system which has state space Ω,
and a Hamiltonian H : Ω→ R specifying the energy of each
configuration x ∈ Ω. Assume that H takes integer values in the
set {0, . . . ,n}.

We want to compute the partition function

Z(β) =
∑
x∈Ω

e−βH(x)

for some inverse temperature β.

Encapsulates some interesting problems:
Physics: The Ising and Potts models
Computer science: counting k-colourings of graphs,
counting matchings (monomer-dimer coverings), . . .

Application: partition functions

|Ω| can be exponentially large and Z(β) can be hard to
compute; e.g. #P-hard. So we resort to randomised
methods for approximating Z(β).

We want to approximate Z(β) up to relative error ε, i.e.
output Z̃ such that

|Z̃ − Z(β)| 6 εZ(β).

A standard classical approach: multi-stage Markov chain
Monte Carlo (e.g. [Valleau and Card ’72, Stefankovič et al. ’09]).

We can apply the above quantum algorithm to speed up
an approximation of expected values in this approach. . .

. . . and we can also replace the classical Markov chains
with quantum walks to get an additional improvement,
based on techniques of [Wocjan and Abeyesinghe ’08].

Application: partition functions

|Ω| can be exponentially large and Z(β) can be hard to
compute; e.g. #P-hard. So we resort to randomised
methods for approximating Z(β).

We want to approximate Z(β) up to relative error ε, i.e.
output Z̃ such that

|Z̃ − Z(β)| 6 εZ(β).

A standard classical approach: multi-stage Markov chain
Monte Carlo (e.g. [Valleau and Card ’72, Stefankovič et al. ’09]).

We can apply the above quantum algorithm to speed up
an approximation of expected values in this approach. . .

. . . and we can also replace the classical Markov chains
with quantum walks to get an additional improvement,
based on techniques of [Wocjan and Abeyesinghe ’08].

Application: partition functions

|Ω| can be exponentially large and Z(β) can be hard to
compute; e.g. #P-hard. So we resort to randomised
methods for approximating Z(β).

We want to approximate Z(β) up to relative error ε, i.e.
output Z̃ such that

|Z̃ − Z(β)| 6 εZ(β).

A standard classical approach: multi-stage Markov chain
Monte Carlo (e.g. [Valleau and Card ’72, Stefankovič et al. ’09]).

We can apply the above quantum algorithm to speed up
an approximation of expected values in this approach. . .

. . . and we can also replace the classical Markov chains
with quantum walks to get an additional improvement,
based on techniques of [Wocjan and Abeyesinghe ’08].

Application: partition functions

|Ω| can be exponentially large and Z(β) can be hard to
compute; e.g. #P-hard. So we resort to randomised
methods for approximating Z(β).

We want to approximate Z(β) up to relative error ε, i.e.
output Z̃ such that

|Z̃ − Z(β)| 6 εZ(β).

A standard classical approach: multi-stage Markov chain
Monte Carlo (e.g. [Valleau and Card ’72, Stefankovič et al. ’09]).

We can apply the above quantum algorithm to speed up
an approximation of expected values in this approach. . .

. . . and we can also replace the classical Markov chains
with quantum walks to get an additional improvement,
based on techniques of [Wocjan and Abeyesinghe ’08].

Example: The ferromagnetic Ising model
We are given as input a graph G = (V,E) with n vertices. We
consider the Ising Hamiltonian

H(z) = −
∑

(u,v)∈E

zuzv.

for z ∈ {±1}n. We want to approximate

Z(β) =
∑

z∈{±1}n

e−βH(z).

Assume that we have a classical Markov chain which
samples from the Gibbs distribution in time Õ(n).
This holds for low enough β (depending on the graph G).

Then we have the following speedup:

Best classical runtime known [Stefankovič et al. ’09]: Õ(n2/ε2)

Quantum runtime: Õ(n3/2/ε+ n2)

Example: The ferromagnetic Ising model
We are given as input a graph G = (V,E) with n vertices. We
consider the Ising Hamiltonian

H(z) = −
∑

(u,v)∈E

zuzv.

for z ∈ {±1}n. We want to approximate

Z(β) =
∑

z∈{±1}n

e−βH(z).

Assume that we have a classical Markov chain which
samples from the Gibbs distribution in time Õ(n).

This holds for low enough β (depending on the graph G).

Then we have the following speedup:

Best classical runtime known [Stefankovič et al. ’09]: Õ(n2/ε2)

Quantum runtime: Õ(n3/2/ε+ n2)

Example: The ferromagnetic Ising model
We are given as input a graph G = (V,E) with n vertices. We
consider the Ising Hamiltonian

H(z) = −
∑

(u,v)∈E

zuzv.

for z ∈ {±1}n. We want to approximate

Z(β) =
∑

z∈{±1}n

e−βH(z).

Assume that we have a classical Markov chain which
samples from the Gibbs distribution in time Õ(n).
This holds for low enough β (depending on the graph G).

Then we have the following speedup:

Best classical runtime known [Stefankovič et al. ’09]: Õ(n2/ε2)

Quantum runtime: Õ(n3/2/ε+ n2)

Example: The ferromagnetic Ising model
We are given as input a graph G = (V,E) with n vertices. We
consider the Ising Hamiltonian

H(z) = −
∑

(u,v)∈E

zuzv.

for z ∈ {±1}n. We want to approximate

Z(β) =
∑

z∈{±1}n

e−βH(z).

Assume that we have a classical Markov chain which
samples from the Gibbs distribution in time Õ(n).
This holds for low enough β (depending on the graph G).

Then we have the following speedup:

Best classical runtime known [Stefankovič et al. ’09]: Õ(n2/ε2)

Quantum runtime: Õ(n3/2/ε+ n2)

Summary

Quantum computers can speed up two of the
most basic tools in classical algorithmics:

Backtracking, for solving constraint
satisfaction problems;
Approximating the mean of a random
variable with bounded variance, for
Monte Carlo methods.

In both cases we get a quadratic speedup.

Thanks!

Quantum walk in a tree

The quantum walk operates on a T-dimensional Hilbert space
spanned by {|r〉} ∪ {|x〉 : x ∈ {1, . . . ,T − 1}}, where r is the root.

The walk starts in the state |r〉 and is based on a set of
diffusion operators Dx, where Dx acts on the subspace Hx
spanned by {|x〉} ∪ {|y〉 : x→ y}:

If x is marked, then Dx is the identity.

If x is not marked, and x 6= r, then Dx = I − 2|ψx〉〈ψx|,
where

|ψx〉 ∝ |x〉+
∑

y,x→y

|y〉.

Dr = I − 2|ψr〉〈ψr|, where

|ψr〉 ∝ |r〉+
√

n
∑

y,r→y

|y〉.

Quantum walk in a tree

The quantum walk operates on a T-dimensional Hilbert space
spanned by {|r〉} ∪ {|x〉 : x ∈ {1, . . . ,T − 1}}, where r is the root.

The walk starts in the state |r〉 and is based on a set of
diffusion operators Dx, where Dx acts on the subspace Hx
spanned by {|x〉} ∪ {|y〉 : x→ y}:

If x is marked, then Dx is the identity.

If x is not marked, and x 6= r, then Dx = I − 2|ψx〉〈ψx|,
where

|ψx〉 ∝ |x〉+
∑

y,x→y

|y〉.

Dr = I − 2|ψr〉〈ψr|, where

|ψr〉 ∝ |r〉+
√

n
∑

y,r→y

|y〉.

Quantum walk in a tree

The quantum walk operates on a T-dimensional Hilbert space
spanned by {|r〉} ∪ {|x〉 : x ∈ {1, . . . ,T − 1}}, where r is the root.

The walk starts in the state |r〉 and is based on a set of
diffusion operators Dx, where Dx acts on the subspace Hx
spanned by {|x〉} ∪ {|y〉 : x→ y}:

If x is marked, then Dx is the identity.

If x is not marked, and x 6= r, then Dx = I − 2|ψx〉〈ψx|,
where

|ψx〉 ∝ |x〉+
∑

y,x→y

|y〉.

Dr = I − 2|ψr〉〈ψr|, where

|ψr〉 ∝ |r〉+
√

n
∑

y,r→y

|y〉.

Quantum walk in a tree

The quantum walk operates on a T-dimensional Hilbert space
spanned by {|r〉} ∪ {|x〉 : x ∈ {1, . . . ,T − 1}}, where r is the root.

The walk starts in the state |r〉 and is based on a set of
diffusion operators Dx, where Dx acts on the subspace Hx
spanned by {|x〉} ∪ {|y〉 : x→ y}:

If x is marked, then Dx is the identity.

If x is not marked, and x 6= r, then Dx = I − 2|ψx〉〈ψx|,
where

|ψx〉 ∝ |x〉+
∑

y,x→y

|y〉.

Dr = I − 2|ψr〉〈ψr|, where

|ψr〉 ∝ |r〉+
√

n
∑

y,r→y

|y〉.

Quantum walk in a tree

The quantum walk operates on a T-dimensional Hilbert space
spanned by {|r〉} ∪ {|x〉 : x ∈ {1, . . . ,T − 1}}, where r is the root.

The walk starts in the state |r〉 and is based on a set of
diffusion operators Dx, where Dx acts on the subspace Hx
spanned by {|x〉} ∪ {|y〉 : x→ y}:

If x is marked, then Dx is the identity.

If x is not marked, and x 6= r, then Dx = I − 2|ψx〉〈ψx|,
where

|ψx〉 ∝ |x〉+
∑

y,x→y

|y〉.

Dr = I − 2|ψr〉〈ψr|, where

|ψr〉 ∝ |r〉+
√

n
∑

y,r→y

|y〉.

Quantum walk in a tree

Let A and B be the sets of vertices an even and odd distance
from the root, respectively.

Then a step of the walk consists of applying the operator
RBRA, where RA =

⊕
x∈A Dx and RB = |r〉〈r|+

⊕
x∈B Dx.

Quantum walk in a tree

Let A and B be the sets of vertices an even and odd distance
from the root, respectively.

Then a step of the walk consists of applying the operator
RBRA, where RA =

⊕
x∈A Dx and RB = |r〉〈r|+

⊕
x∈B Dx.

Quantum walk in a tree

Let A and B be the sets of vertices an even and odd distance
from the root, respectively.

Then a step of the walk consists of applying the operator
RBRA, where RA =

⊕
x∈A Dx and RB = |r〉〈r|+

⊕
x∈B Dx.

Quantum walk in a tree

Let A and B be the sets of vertices an even and odd distance
from the root, respectively.

Then a step of the walk consists of applying the operator
RBRA, where RA =

⊕
x∈A Dx and RB = |r〉〈r|+

⊕
x∈B Dx.

Quantum walk in a tree

Let A and B be the sets of vertices an even and odd distance
from the root, respectively.

Then a step of the walk consists of applying the operator
RBRA, where RA =

⊕
x∈A Dx and RB = |r〉〈r|+

⊕
x∈B Dx.

Applications

There are also a number of combinatorial problems which can
be expressed as partition function problems.

Counting valid k-colourings of a graph G on n vertices:
Assume, for example, that the degree of G is at most k/2.

Best classical runtime known: Õ(n2/ε2)

Quantum runtime: Õ(n3/2/ε+ n2)

Counting matchings (monomer-dimer coverings) of a graph
with n vertices and m edges:

Best classical runtime known: Õ(n2m/ε2)

Quantum runtime: Õ(n3/2m1/2/ε+ n2m)

Applications

There are also a number of combinatorial problems which can
be expressed as partition function problems.

Counting valid k-colourings of a graph G on n vertices:
Assume, for example, that the degree of G is at most k/2.

Best classical runtime known: Õ(n2/ε2)

Quantum runtime: Õ(n3/2/ε+ n2)

Counting matchings (monomer-dimer coverings) of a graph
with n vertices and m edges:

Best classical runtime known: Õ(n2m/ε2)

Quantum runtime: Õ(n3/2m1/2/ε+ n2m)

Applications

There are also a number of combinatorial problems which can
be expressed as partition function problems.

Counting valid k-colourings of a graph G on n vertices:
Assume, for example, that the degree of G is at most k/2.

Best classical runtime known: Õ(n2/ε2)

Quantum runtime: Õ(n3/2/ε+ n2)

Counting matchings (monomer-dimer coverings) of a graph
with n vertices and m edges:

Best classical runtime known: Õ(n2m/ε2)

Quantum runtime: Õ(n3/2m1/2/ε+ n2m)

