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Quantum speedup of classical algorithms

Which general classical algorithmic techniques can we speed
up using a quantum computer?

Some examples:

Unstructured search [Grover ’96]

Probability amplification: boost the success probability of
a randomised algorithm to 99% [Brassard et al. ’02]

Probability estimation: determine the success probability
of a randomised algorithm up to 1% relative error [Brassard
et al. ’02]

Simulated annealing [Somma et al. ’07]

In all of these cases, there are quantum algorithms which
achieve quadratic speedups over the corresponding classical
algorithm.
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Today’s talk

Two other standard classical algorithmic techniques which can
be accelerated by quantum algorithms:

Backtracking: a standard method for solving constraint
satisfaction problems
Approximating the mean of a random variable with
bounded variance: the core of Monte Carlo methods

In both cases, we obtain quadratic quantum speedups.

The quantum algorithms use different techniques:

The backtracking algorithm uses quantum walks, based
on an algorithm of [Belovs ’13].
The mean-approximation algorithm uses amplitude
amplification, based on ideas of [Heinrich ’01].
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Constraint satisfaction problems

Backtracking is a general approach to solve constraint
satisfaction problems (CSPs).

An instance of a CSP on n variables x1, . . . , xn is specified
by a sequence of constraints, all of which must be satisfied
by the variables.

We might want to find one assignment to x1, . . . , xn that
satisfies all the constraints, or list all such assignments.

For many CSPs, the best algorithms known for either task
have exponential runtime in n.

A simple example: graph 3-colouring.
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General backtracking framework

This idea, known as backtracking, can be applied to any CSP,
given the following assumptions:

We have a problem on n variables, each picked from
[d] := {0, . . . , d − 1}. Write D := ([d] ∪ {∗})n for the set of
partial assignments, where ∗ means “not assigned yet”.

We have access to a predicate

P : D→ {true, false, indeterminate}

which tells us the status of a partial assignment.

We have access to a heuristic

h : D→ {1, . . . ,n}

which determines which variable to choose next, for a
given partial assignment.
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Main result [AM ’15]

Theorem
Let T be the number of vertices in the backtracking tree. Then
there is a bounded-error quantum algorithm which evaluates
P and h O(

√
Tn3/2 log n) times each, and outputs x such that

P(x) is true, or “not found” if no such x exists.

If we are promised that there exists a unique x0 such that P(x0)
is true, this is improved to O(

√
Tn log3 n).

In both cases the algorithm uses poly(n) space and poly(n)
auxiliary quantum gates per use of P and h.

The algorithm can be modified to find all solutions by
striking out previously seen solutions.
We usually think of T as being exponentially large in n. In
this regime, this is a near-quadratic separation.
Note that the algorithm does not need to know T.
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Previous work

Some previous works have developed quantum algorithms
related to backtracking:

[Cerf, Grover and Williams ’00] developed a quantum
algorithm for constraint satisfaction problems, based on a
nested version of Grover search. This can be seen as a
quantum version of one particular backtracking algorithm
that runs quadratically faster.

[Farhi and Gutmann ’98] used continuous-time quantum
walks to find solutions in backtracking trees. They
showed that, for some trees, the quantum walk can find a
solution exponentially faster than a classical random walk.

By contrast, the algorithm presented here achieves a (nearly)
quadratic separation for all trees.
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Search in the backtracking tree

Idea: Use quantum search to find a solution (“marked vertex”)
in the tree produced by the backtracking algorithm.

Many works have studied quantum search in various graphs,
e.g. [Szegedy ’04], [Aaronson and Ambainis ’05], [Magniez et al. ’11] . . .

But here there are some difficulties:
The graph is not known in advance, and is determined by
the backtracking algorithm.
We start at the root of the tree, not in the stationary
distribution of a random walk on the graph.

These can be overcome using work of [Belovs ’13] relating
quantum walks to effective resistance in an electrical network.
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Search by quantum walk (sketch)

We apply phase estimation to a quantum walk starting at the
root, with precision O(1/

√
Tn), where n is an upper bound on

the depth of the tree, and output “solution exists” if the
eigenvalue is 1, and “no solution” otherwise.

Claim (special case of [Belovs ’13])
This procedure succeeds with probability O(1).

So we can detect the existence of a solution with O(
√

Tn)
quantum walk steps.
Each quantum walk step can be implemented with O(1)
uses of P and h.
We can also find a solution using binary search with a
small overhead.
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Part 2: Monte Carlo methods
Monte Carlo methods use randomness to estimate numerical
properties of systems which are too large or complicated to
analyse deterministically.
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These methods are used throughout science and engineering:



. . . and were an application of the first electronic computers:

Pic: Wikipedia



Monte Carlo methods

The basic core of many Monte Carlo methods is:

General problem
Given access to a randomised algorithm A, estimate the
expected output value µ of A.

The input is fixed, and the expectation is taken over the
internal randomness of A.

The output value v(A) is a real-valued random variable.

We assume that we know an upper bound on the variance of
this random variable:

Var(v(A)) 6 σ2.
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Classical algorithm

The following natural algorithm solves this problem for any A:

1 Produce k samples v1, . . . , vk, each corresponding to the
output of an independent execution of A.

2 Output the average µ̃ = 1
k
∑k

i=1 vi of the samples as an
approximation of µ.

Assuming that the variance of v(A) is at most σ2,

Pr[|µ̃− µ| > ε] 6
σ2

kε2 .

So we can take k = O(σ2/ε2) to estimate µ up to additive error
ε with, say, 99% success probability.

This scaling is optimal for classical algorithms [Dagum et al. ’00].
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Quantum speedup

With a quantum computer, we can do better:

Theorem [AM ’15]

There is a quantum algorithm which estimates µ up to
additive error ε with 99% success probability and

Õ(σ/ε)

uses of A (and A−1).

The Õ notation hides polylog factors: more precisely, the
complexity is O((σ/ε) log3/2(σ/ε) log log(σ/ε)).

This complexity is optimal up to these polylog factors
[Nayak and Wu ’98].

The underlying algorithm A can now be quantum itself.
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Related work

This problem connects to several previous works, e.g.:

Approximating the mean of an arbitrary bounded
function (with range [0, 1]), with respect to the uniform
distribution. Quantum complexity: O(1/ε) [Heinrich ’01],
[Brassard et al. ’11].

Estimating the expected value tr(Aρ) of certain
observables A which are bounded [Wocjan et al. ’09], or
whose tails decay quickly [Knill, Ortiz and Somma ’07].

Approximating the mean, with respect to the uniform
distribution, of functions with bounded L2 norm [Heinrich
’01]

Here we generalise these by approximating the mean output
value of arbitrary quantum algorithms, given only a bound on
the variance.
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Ideas behind the algorithm

The algorithm combines and extends ideas of [Heinrich ’01],
[Brassard et al. ’11], [Wocjan et al. ’09].

A sketch of the argument:

If we know that the output of A is bounded in [0, 1], we
can use amplitude estimation to approximate µ up to ε,
using A (and A−1) O(1/ε) times.

So divide up the output values of A into blocks of
exponentially increasing distance from µ.

Rescale and shift the values in each block to be bounded
in [0, 1]. Then use amplitude estimation to estimate the
average output value in each block.

Sum up the results (after rescaling them again).

This works because, if the variance of A is low, output values
far from µ do not contribute much to µ, so can be estimated
with lower precision.
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Application: partition functions

Consider a (classical) physical system which has state space Ω,
and a Hamiltonian H : Ω→ R specifying the energy of each
configuration x ∈ Ω. Assume that H takes integer values in the
set {0, . . . ,n}.

We want to compute the partition function

Z(β) =
∑
x∈Ω

e−βH(x)

for some inverse temperature β.

Encapsulates some interesting problems:
Physics: The Ising and Potts models
Computer science: counting k-colourings of graphs,
counting matchings (monomer-dimer coverings), . . .
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Application: partition functions

|Ω| can be exponentially large and Z(β) can be hard to
compute; e.g. #P-hard. So we resort to randomised
methods for approximating Z(β).

We want to approximate Z(β) up to relative error ε, i.e.
output Z̃ such that

|Z̃ − Z(β)| 6 εZ(β).

A standard classical approach: multi-stage Markov chain
Monte Carlo (e.g. [Valleau and Card ’72, Stefankovič et al. ’09]).

We can apply the above quantum algorithm to speed up
an approximation of expected values in this approach. . .

. . . and we can also replace the classical Markov chains
with quantum walks to get an additional improvement,
based on techniques of [Wocjan and Abeyesinghe ’08].
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Example: The ferromagnetic Ising model
We are given as input a graph G = (V,E) with n vertices. We
consider the Ising Hamiltonian

H(z) = −
∑

(u,v)∈E

zuzv.

for z ∈ {±1}n. We want to approximate

Z(β) =
∑

z∈{±1}n

e−βH(z).

Assume that we have a classical Markov chain which
samples from the Gibbs distribution in time Õ(n).
This holds for low enough β (depending on the graph G).

Then we have the following speedup:

Best classical runtime known [Stefankovič et al. ’09]: Õ(n2/ε2)

Quantum runtime: Õ(n3/2/ε+ n2)
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Summary

Quantum computers can speed up two of the
most basic tools in classical algorithmics:

Backtracking, for solving constraint
satisfaction problems;
Approximating the mean of a random
variable with bounded variance, for
Monte Carlo methods.

In both cases we get a quadratic speedup.

Thanks!



Quantum walk in a tree

The quantum walk operates on a T-dimensional Hilbert space
spanned by {|r〉} ∪ {|x〉 : x ∈ {1, . . . ,T − 1}}, where r is the root.

The walk starts in the state |r〉 and is based on a set of
diffusion operators Dx, where Dx acts on the subspace Hx
spanned by {|x〉} ∪ {|y〉 : x→ y}:

If x is marked, then Dx is the identity.

If x is not marked, and x 6= r, then Dx = I − 2|ψx〉〈ψx|,
where

|ψx〉 ∝ |x〉+
∑

y,x→y

|y〉.

Dr = I − 2|ψr〉〈ψr|, where

|ψr〉 ∝ |r〉+
√

n
∑

y,r→y

|y〉.
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Quantum walk in a tree

Let A and B be the sets of vertices an even and odd distance
from the root, respectively.

Then a step of the walk consists of applying the operator
RBRA, where RA =

⊕
x∈A Dx and RB = |r〉〈r|+

⊕
x∈B Dx.
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Applications

There are also a number of combinatorial problems which can
be expressed as partition function problems.

Counting valid k-colourings of a graph G on n vertices:
Assume, for example, that the degree of G is at most k/2.

Best classical runtime known: Õ(n2/ε2)

Quantum runtime: Õ(n3/2/ε+ n2)

Counting matchings (monomer-dimer coverings) of a graph
with n vertices and m edges:

Best classical runtime known: Õ(n2m/ε2)

Quantum runtime: Õ(n3/2m1/2/ε+ n2m)
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