Efficient Quantum Simulation
Euan Allen

Advanced Quantum Information Theory Essay

Quantum Engineering Centre for Doctoral Training, The University of Bristol

April 9, 2015

1 Introduction

Quantum simulation, the idea that you can simulate a quantum system using
another quantum system, is thought to be one of the main applications of quan-
tum computation. Feynman was the first to suggest the this might be useful,
given the difficulties of performing quantum simulations on classical machines
[1]. Simulating the time evolution of an arbitrary quantum system is intractable
for a classical machine [2]. In other words, simulating a quantum system on a
classical computer scales exponentially with the complexity of the system. We
can see this by considering a collection of n two-level systems (qubits). To
record the state of the system we need to store 2" complex numbers. To cal-
culate the time evolution of this system, we need to exponentiate a 2™ x 2™
matrix. For a relatively modest number of qubits, this number is very large
(e.g. n =40 is a matrix of ~ 10%* entries). A ‘back of the envelope’ calculation
by Brown et al. [3] shows that for a modest n = 27, to store the complex num-
bers needed to define a quantum state would require ~ 1gb of memory. One
of the largest classical simulations of a quantum system to date required 1tb
of memory, 4096 processors and involved the simulation of 36 qubits [4]. It is
unlikely that there will ever be an efficient classical algorithm for simulating the
dynamics of quantum systems. The problem is BQP-complete, and so an effi-
cient classical algorithm for quantum simulation would mean that any problem
that is efficient for a quantum computer could be done efficiently on a classical
one (e.g. Shor’s factorisation algorithm) [5].

There are two general approaches that can be taken with respect to quantum
simulation. The first, often referred to as ‘analogue quantum simulation’, is a
simulation of a quantum system by use of another system with similar dynam-
ics. In this approach, the Hamiltonian of the system you are trying to simulate,
Hsys, is mapped onto the Hamiltonian of the simulator, Hs;,,, which you have
more control of. In essence the simulator system is used to mimic the first

(sometimes also referred to as a ‘quantum emulator’). The requirement of sim-
ilar dynamics between the two systems restricts the class of problems that any
analogue simulation can emulate. It is possible though that analogue quantum
simulation may be the easier of the two to implement experimentally [3].

The second approach, sometimes referred to as ‘digital quantum simulation’,
is the application of a quantum algorithm to suit the model of your physical
system. In this method, you encode the quantum state of your system into
qubits and then ‘evolve’ the system by application of a set of unitary gates. It
is this method of approach that will be the focus for the rest of the essay.

In quantum mechanics, the evolution of the state of a quantum system, |¢),
is governed by the Schrédinger equation:

L d
i [h(t) = H(®) [¥(0)) (1)

where H (¢) is the Hamiltonian of the quantum system. For a time-independent
system where H(t) = H is constant, the solution of the Schrédinger equation is

(1)) = e~ ™ [1(0)) . (2)
It is the aim of quantum simulation to approximate this evolution. Specifically,
we aim in quantum simulation to approximate the unitary

U(t) = e "H 3)

to within a certain error. Note that from now on we will ignore factors of A.
Typically, a unitary U’ is said to approximate the unitary U to within € if

0" =Tl <, (4)

where the operator norm (also known as the spectral norm or induced Euclidean
norm) is defined as:

LAl

_)
IAI= s "ol ®)
and |||} = +/{(¥|y). For Hermitian matrices, ||H|| is equal to the magnitude
of the largest eigenvalue of that matrix.

An important point to make is that these methods of Hamiltonian simulation
are not only useful for simulating actual physical systems, but can also be used
to implement quantum algorithms that can be defined in terms of Hamiltonian
dynamics (for example continuous-time quantum walks and adiabatic quantum
computing).

2 Quantum Simulation Algorithms
There have been a number of different algorithms proposed for the simulation

of quantum systems. Almost all proposals have been limited to the solution
of one of two classes of Hamiltonians: k-local and d-sparse (the simulation of

non-sparse Hamiltonians has been looked in to by Childs and Kothari [6]). A
Hamiltonian acting on n qubits is said to be k-local if it can be written in the

form
l

H=) H (6)

Jj=1

for some [<(7), where H} is a Hermitian matrix acting on a space of at most 2k
dimensions. There are many physical systems that follow these requirements:
hard-sphere and van der Waals gases, Ising and Heisenberg spin systems, lattice
gauge theories, and so on [2].

A Hamiltonian of dimensions N x N is said to be d-sparse (in a fixed basis)
if there are at most d non-zero entries per row, where d = poly(log(N)). One
can note that a k-local Hamiltonian with I terms (see Equation (6)) is d-sparse
with d = 2¥m [7]. This means that any algorithm capable of simulating a sparse
Hamiltonian is also capable of simulating a local one.

We will now take a detailed look at three different methods of quantum
simulation proposed over the years, starting off with the first real attempt at a
digital quantum simulation proposed by Lloyd.

2.1 Trotter Decomposition - Lloyd (1996)

The first attempt at a quantum algorithm from Feynmans first postulate was
completed by Seth Lloyd in an attempt to simulate k-local Hamiltonians [2].

Theorem 2.1. (SOLOVAY-KITAEV THEOREM). Let U be a unitary operator
which acts non-trivially on k qubits, and let S be an arbitrary universal set of
quantum gates. Then U can be approximated in the operator norm to within €
using O(log®(1/€) gates from S, for some ¢ < 4. The value of ¢ varies between
different proofs of the theorem. For example Dawson and Neilson give a value
of ¢ = 3.97 [8].

Interestingly, this theorem tells us that a unitary operator that can efficiently
realised with a universal set of quantum gates can also be realised efficiently with
another such set to within a bounded error. More precisely; the running time
of an algorithm only varies by a logarithmic factor between two universal gate
sets meaning that polynomial quantum speedups are robust against the choice
of gate set [8].

Lemma 2.2. (LIE-TROTTER PRODUCT FORMULA). Let Hy and Hs be Her-
mitian matrices such that ||H1|| < K and ||Hz|| < K, for some real K < 1.
Then

efiHlefin _ 67i(H1+H2) + O(KQ) (7)

Repeated application of this formula for multiple Hermitian matrices Hq, ..., H;
all satisfying || H;|| < K < 1Vj, allows one to write the following relation:

e*iHlefin.”efiHl — efi(H1+H2+A..Hl) + O(ZSKQ). (8)

We can see from our definition of a k-local Hamiltonian (Equation (6)) that
what we would like to simulate is the exponent of a sum of Hermitian operators
U= efth _ e—iZ;zl Hjt. (9)
Using Lemma 2.2, one can show that for a constant C' such that n > CI3(Kt)? /e
”efiHlt/nefngt/nmefiHlt/n _ efi(H1+H2+...Hl)t/n|| < 6/’/7,. (10)

Using the result of Lemma 2.3, we can re-write Equation (10) as
”(efiHlt/nefngt/n.”efiHI,t/n)n _ efi(H1+H2+...H,,)t/|| <e. (11)
The Solovay-Kitaev theorem tells us that it is possible to approximate each
e~ 5t individually to within an error of € in time O(polylog(1/e€)). This fact
along with Equation (11) shows us that it is possible to approximate the operator
et to within € in time O(I3(Kt)%/¢), up to polylogarithmic factors. By

redefining K = ||H|| and using that | = O(n®) where N = 2", then we can see
that this algorithm scales as O(polylog(N)(||H||t)?/¢) (see Table 1).

Lemma 2.3. Let (U;), (V;) be sequences of m unitary operators satisfying || U; —
Vill < e Vi where 1 <i <. Then ||U;U;-1...U; — V;V;—1..V1| <le.

This algorithm can be quite simply improved upon by a slight re-ordering
of the exponents as per the Lie-Trotter-Suzuki formulae:

(e—iAt/ne—iBt/n)n — e—i(A—i—B)t + 0(752/n)7 (12)

(efiAt/2n67iBt/nefiAt/2n)n _ efi(AJrB)t + O(tS/n2)7 (13)

where expansions to arbitrary order are known [9]. Work has been done to
show that the k" order expansion with an error upper bound of €, requires at

most /2
Hl|t
52km2||H|t(m” ” > (14)
€

exponentials [10].

2.2 Sparse Matrix Simulation - Aharonov & Ta-Shma (2003)

The first instance of an algorithm to simulate a sparse matrix was completed
by Aharonov and Ta-Shma in 2003 [11]. In order to show how this is done, we
first need to introduce the following definitions:

Definition (Row COMPUTABILITY) A matrix H is said to be row computable
if given a row index ¢, there exists an efficient algorithm to output a list (j, H; ;)
running over all non-zero entries in the row ¢. This is often thought of as a query
to a black-box that given the input 7, will output the list of non-zero entries in
the row i ((j:Hi,j)) .

Definition (COMBINATORIAL BLOCK DIAGONAL MATRIX) A block diagonal
matrix (in the traditional sense) is a matrix that can written in the form

M; O - 0
0 My --- 0
0 0 - My

where each M; is a square matrix of arbitrary dimensions. A matrix is said to
be a n X n block matrix if the matrices M; are at most n X n in size. A matrix
is combinatorially block diagonal if under perturbation of rows or columns, it is
possible to construct a block diagonal matrix in the usual sense (this definition
is stated more precisely in Definition 6 of [11]).

The outline of the argument in [11] is as follows: First it is shown that it
is possible to decompose H into a superposition of 2 x 2 combinatorially block
diagonal matrices (Lemma 2.4). Next it is proven that each of these matrices
can be efficiently simulated (Lemma 2.5), much like the Solovay-Kitaev Theorem
in Section 2.1. Finally Trotter decomposition is used (as before) to show that
the total Hamiltonian, H, can be efficiently simulated. The following text will
prove Lemma 2.4.

Lemma 2.4. (DECOMPOSITION LEMMA) Let H be a d-sparse, row-computable
(d+l)2n6 H
m=1

Hamiltonian over n qubits. It is possible to decompose H into H = m

where each H,, is:
e A sparse, row-computable Hamiltonian over n qubits, and,
e A 2 x 2 combinatorially block diagonal.

Proof. For the Hamiltonian H, we label each entry of the matrix H; ; for i < j
(upper diagonal entries) by a colour!. The colour of an entry col (i, j) is defined
as the tuple (k,imodk, jmodk, rg(i,7), cu(i,7)) where

b 1 ifi=j (15)
| The lowest integer where i # jmodk for 2 < k < n? otherwise,

and

0 itH; ;=0
ri(i,j) = ¢ The index of H; ; in the list of all (16)
non-zero elements in the " row of H otherwise.

The definition of cg(i,7) is the same as Equation (16) but now for columns
as opposed to rows. For values of ¢ > j (lower diagonal entries), we define

IThe ‘colour’ of an entry here is just a tool for labelling the entries of H as to which term

2 6
in the superposition H = Zgii) ™" H,, they sit in. Each term in the summation with have a
unique colour. We will define the colour such that each superposition term has the properties

required for Lemma 2.4 to hold.

colp(i,7) = colg(j,1). We define H,,, to contain all entries from H that are a
particular colour m. As each entry of H,, has a single assigned colour, we can
reconstruct H by a summation over all colours (H = Y H,;,). As H is Hermitian
and each H,, is symmetric about the diagonal (from coly (i,j) = coly (j,1)), it
follows that every H,, is also Hermitian. Also as H is row sparse and row
computable, it follows that each H,, also has these properties. From this, one
can see that the first requirement of Lemma 2.4 are satisfied.

Figure 1: How the colouring of the matrix restricts the possible structure of
H,,. See below for details.

From the restraint of rg (4, j) and cg(4,j) on the colour tuple, we know that
for a non-zero element of a matrix H,, at position (¢,j), there are no other
non-zero elements in row ¢ or column j (red lines in upper half of Figure 1).
Furthermore, the other tuple colouring components (k,imodk, jmodk) create
the case where there exists only a single non-zero element of H,, in the row j
or column ¢ in the position (j,¢) (blue lines in upper half of Figure 1). This
case is reflected for i < j as coly(i,j) = coly(j,4) (dashed lines in Figure 1).
From these two conditions, it leads that each matrix H,, can be permuted to
become a 2 x 2 block diagonal matrix where each mirror diagonal pair (H; j,
H, ;) forms a block. Therefore each H,, is a combinatorially block diagonal,
proving the second part of Lemma 2.4. O

Lemma 2.5. (SIMULATION OF 2 x 2 BLOCK MATRICIES) Every 2 X 2 combi-
natorially block diagonal, row-computable Hamiltonian is simulatable to within
arbitrary polynomial approximation.

In the interest of conciseness, the proof of Lemma 2.5 will not be given here
but is available in Section 3.4.2 of [11]. Using Lemmas 2.4 and 2.5, it is now
possible to show that a row-sparse, row-computable Hamiltonian on n qubits is
simulatable.

Let H be a d-sparse Hamiltonian where d < poly(logN) and ||H| = A <
poly(n). Our goal (¢t > 0) is to simulate e~ efficiently to within e accuracy.
We first express H = Zﬁ/{:l H,, from Lemma 2.4 where M < (D + 1)?n% <
poly(n). Then using arguments from Lemma 2.2 we again arrive at Equa-
tion (11) with [= (d + 1)?n5. Lemma 2.5 shows us that each H; can be
efficiently simulated, and so we can approximately simulate e ~*#* to within the
desired error. The complexity of this construction is given in Table 1 with re-

spect to the number of queries that have to be made to the black-box defined
in Definition 2.2.

2.3 Truncated Taylor Series - Berry et al. (2014)

We now discuss a method introduced by Berry et al. [12] for simulating finite-
dimensional Hamiltonians of the form

L
H= Z a Hj, (17)
=1

where each H; is unitary and implementable. Both local and sparse Hamiltoni-
ans can be decomposed into this form. The first step of the method is to break
up the evolution of the unitary in Equation (3) into r segments, each of length
t/r. The time evolution of each of these segments can be approximated as

K

, —iHt/r)k
Uy 1= ittt o 3 (HTS k,/r) , (18)
k=0 ’

where the series has been truncated at order K. We know H is of the form in
Equation (17), and so the truncated sum U, can be expanded as

SN (i)
UT ~ Z Z To‘halrz“'alkHl1H12"'Hlk7 (19)
k=011,lo,...,lp=1 :

where each H; is a unitary operator that is implementable and «; > 0. Note
that the sum as a whole is not unitary due to truncation. This expression has
the form

U=> 8V (20)

where V; = (—i)*H;, H,...H;, and 3; > 0. This type of expression has be
investigated previously by Kothari [13]. We now need to construct a mechanism
for implementing U. If this sum were exactly unitary, one could use the oblvious
amplitude amplification procedure described in [14]. However the sum is only
close to unitary by an error that can be bounded (by choice of K) and so requires
a variation of this technique. Here we first summarise the procedure in [14] and
then show how this technique can be altered for non-unitary sums.

We have assumed that each unitary V; is implementable, which can be ab-
stracted as

Sv 1) [9) = 13) Vi 1), (21)

where j € 0,1,...,m and |¢) is any arbitrary state. Before continuing, we define
the unitary B to be

B10) = 5= > VA). (22)
§=0

where s := Z;ﬁ:o B;. By defining the operator
W= (B'@D)Sy(B ®1), (23)

one can show that
W10y 9 = (B! o DSy (B @) |0)[9) =+ [0)T]0) + /1~ 518), (24)

where |®) is a state who’s first qubit (the ancillary state) is supported in the
subspace orthogonal to |0) [14]. Application of the projector P := [0) (0] ® T
allows us to write

PW10)16) = < 10) T [6) (25)

The value of s can be varied by changing the number of segments r that we
divide our evolution in to. For the oblivious amplitude amplification results of
[14], we aim for s = 2. This then allows for the construction of U by application
of W, W and the reflection R :=1 — 2P:

AL0)) = [0) U |) , (26)

where A := —WRW'RW. For the case of truncation however, we are dealing
with a Taylor series that gives a good, but non-unitary, approximation U of
U,. In this case the Equation (26) is not valid and so we require an alternative
solution. By first observing that W is unitary, P2 = P and P|0) [¢)) = |0) |¢),
one can see that
PA0) [y) = —PWRW!RW [0) [¢),
= —PW(I —2P)WT(T - 2P)W |0) |¢)),
= (3PW — 4PWPWTPW) [0) |4) . (27)

This equation can be further reduced by using PWP = 1(|0) (0| ® U):

PA|0) [¥) = (3PW — 4PWPWTPW)|0) |4),
= (3PWP — 4PWPPW'PPWP)|0) |¢)

= |0) <“:’U - ;00*0) ¥ (28)

This is a generalised form of the oblivious amplitude amplification result of Berry
et al. [14]. If we add the restrictions that |s — 2| = O(6) and ||U — U,|| = O(4),
then we are close to being in the unitary regime and it follows that |[TUT —1|| =
O(6) and

1PA10) [1) —[0) U [¢) || = O(6). (29)

So if for each segment the error is O(J), then if we take § = O(e/r) we will be
within the required total error.

The basis of this algorithm is the application of the unitary A := —W RWRW
where W := (BT ® I)Sy (B ®I). By construction, the application of A requires
two instances of Sy, one instance of S‘T/, and three instances of both B and
Bt respectively. The complexity of each of these processes, along with other
associated costs (like the number of ancillary states required) are considered in
[12]. The result, for a Hamiltonian that is a sparse matrix with an oracle where
the Hamiltonian is a sum of equal parts (a; constant), is that the number of
queries scales as

log(7/€)

7—loglog;(T/e) ’ (30)

where 7 = d||H || maxt-

2.4 Other Algorithms

There have been a number of alternative algorithms for the simulation of Hamil-
tonians since Lloyd in 1996. A brief introduction to some will be given in this
section and the query complexity of each are given in Table 1. Childs in 2004 [15]
gave a solution for reversible simulation of bipartite product Hamiltonians of
the form H = H4 ® Hp. This was then followed by Berry et al. [10] who gave
improvements on simulation of sparse Hamiltonians. Childs [16] was the first
author to tackle the simulation of non-sparse Hamiltonians (he also performed
analysis on sparse Hamiltonians), which was performed using discrete and con-
tinuous quantum walks. Childs later with Berry [17] produced another quantum
walks algorithm which can be specifically applied to sparse Hamiltonian simu-
lation. One of the more recent results is by Berry et al. [5] who have performed
simulation of a sparse Hamiltonian via a combination of quantum walk meth-
ods and fractional-query simulation. They state that their simulation has near
optimal dependence on all parameters (discussed below).

3 Discussion

There are a number of lower bounds for the complexity scaling of the simu-
lation algorithms. Berry et al. [10] were the first to show that sublinear time
scaling is not possible and so an algorithm must use 2(¢) queries. A sublinear
scaling would be an algorithm that for sufficiently large ¢t would grow slower
in complexity than a linear function. This result is however only valid for the
‘black box’ setting, where the Hamiltonian H takes the form of a black box
that can be queried. Improvements to this bound how been completed by Berry
et al. [5] who produce a bound of Q(7) where 7 := d||H||mqert- This means
that the complexity must be at least linear in the product of the sparsity and
the evolution time. Note that this bound is stronger than proof of Q(t) and
Q(d) independently, since this would only provide a bound of (¢t + d) which is
weaker than the Q(td) bound. This bound also proves that the dependence of
[17] and [16] is optimal and that [5] is near optimal. A bound for the allowed

log/e))
loglog(1/¢)’"
This proves optimal dependence on this parameter by [5], [14] and [12].

The query complexity of a number simulation algorithms are presented in
Table 1. Quantum simulation algorithms are inherently difficult to compare as
they often have very distinct constructions and are valid for particular situations.
For Table 1, the “Query Complexity” signals either the number of operations
that need to be performed or the number of queries that need to be sent to
the Hamiltonian black box. For the black box algorithms, there is a secondary
complexity which involves the number of additional 2-qubit gates that need
to be performed along with the black box queries. This complexity will not
be discussed here but is analysed in a number of different papers (see [14] for
example).

error dependence € has also been shown by Berry et al. to be Q(

Source Query complexity
S.Lloyd (1996) [2] poly(logN)(||H |t)2 /e
Aharonov & Ta-Shma (2003) [11] poly(d, logN)(||H||t)3/2 /€
Childs (2004) [15] (dYog*(N || H||t))(1+9) /e? (for any § > 0)
Berry et al. (2007) [10] (d*log* (N||H||t))1+9) /ed (for any § > 0)
Childs & Kothari (2011) [18] (dPlog* (N || H||t))+9 /ed (for any § > 0)
Childs (2010) [16], Berry & Childs (2012) [17] A H | mast/ /e
log(r/e) _ g2
Berry et al. (2014) [12, 14] TToglog(/9 where 7 = d*||H||maat

Berry et al. (2015) [5] Tlolgoﬁ)(% where 7 = d|| H||maxt

Table 1: Comparison of simulation algorithms. The parameters are defined as
follows: NN dimensional matrix, d sparsity, ¢ evolution time, e allowed error.
Here log*(n) = min{r[log" (n) < 2} where (") denotes an iterative logarithm
(r =2 =log(log(n))). The quantity || H||mas denotes the largest entry of H in
absolute value. Table originally presented by Childs [19].

We begin first by looking at how the latest result of Berry [5] varies with
different scaling parameters (Figure 2). The graphs show how the query com-
plexity varies with sparsity d, time ¢ and error €. The first observation is that
the scaling in time appears to be very approximately linear, showing that the
% term offers a near constant contribution. This means that the algo-
rithm is indeed close to the optimal linear time scaling. We can also see for
the error scaling plot (right, Figure 2), that for a required error bound > 0.1,
the query complexity is approximately constant. Although the position of this
transition will vary with the input parameters, it is useful to know that there is
approximately a threshold above which you will see very little gain in compu-
tational time for a larger error result.

We now look to compare how this algorithm compares with other results,

10

3 10 % 10

@
=2}

1-sparse
10-sparse
B 100-sparse

-

o

[}

Murmnber of gueries
MNurnber of gueries
IS

w

0 2 4 8 8 10 1} 02 0.4 G na 1
Time steps <107 Errar (£)

Figure 2: A plot showing the results of [5] (O(Tblgofgo(%)) where 7 =
d||H||mazt- The left plot shows scaling with simulation time ¢ for different

sparsitys d. The error in this case was set to € = 0.01. The right plot shows
scaling with error for a constant simulation time of ¢ = 10°. For each plot
||H Hmax =1L

specifically that of [14, 12] and [16, 17] which have a complexity scaling of
log(r/e)

O(Tloglog(r/e)

these algorithms scale with increasing simulation time for different values e,

where d and || H||;mqs are constant. Conversely Figure 4 compares the scaling
with respect to error, where now the constant terms are ¢, d and ||H||maz-

We can see from the plots of Figure 3, the most efficient algorithm for a
particular allowed error can vary depending on that parameters of the system.
However we can see that for a particular situation, if you have an algorithm
that is most efficient at a certain number of time steps, it is likely to still be the
most efficient at all other time steps. This will not be true very large simulation
times, as the results of Childs and Berry (2010/2012) [16, 17] have been shown
to have optimal dependence on £, meaning that the will eventually become most
efficient for any valid system parameters.

The plots of Figure 4 compare the complexity with increasing allowed error.
What we can see is that for larger values of error, Childs/Berry 2010/2012[16, 17
outperforms more recent results. The results of 2014 and 2015 have approxi-
mately constant scaling with error, whereas 2010/2012 varies quite dramatically
eventually becoming less efficient than both algorithms at low €. The optimal
scaling in ¢t of 2010/2012 becomes apparent when looking at the value of e
where 2010/2012 and 2014 require the same number of queries. For example for
t = 109, this point is at € ~ 14 x 107> (see right plot Figure 4) and for ¢t = 102,
e~ 8x 1072,

) and O(d||H||mazt/+/€) respectively. Figure 3 compares how

11

0° 10°
o 10 o 107
2 g |
El]
= E3
5 0° 5 10°
5 5
£ E
=90 = 9
. Berry 2014 "
10 Berry 2015 1 10
Childs/Berry 2010/2012
0 " " " " 10 . . . "
2 4 5]] 10 1} 2 4 B 8 10
Time steps w1’ Time steps w10°

Figure 3: Algorithm scaling with increasing simulation time (time steps). The
constants for the simulation were set at ||H||;mqer = 1 and d = 10. The left image
displays the results for e = 0.01 and the right for e = 0.0001. The legend is valid
for both plots.

jlig I
Berry 2014 o
Berry 2015 LU A
Childs/Berry 2010/2012

Nurmber of gueries
=]
Nurmber of gueries

0 0z 0.4 0.6 0.8 1 0 0.z 0.4 08 0.8 1
Error (g) Error (g) w10

Figure 4: Algorithm scaling with increasing allowed error €. The constants for
the simulation were set at |[H||maz = 1, t = 10° and d = 10. Both left and
right images display the same function, but are plotted over different ranges of
€. The legend is valid for both plots.

12

4 Conclusion

We have introduced and discussed a wide range of algorithms within this essay.
Following first from the early beginnings of Lloyd, Aharonov and Ta-Shma we
ended with the current best known algorithms of Berry et al. and Childs. We
have show the optimal bounds of these algorithms and that some algorithms
are already at or close to these bounds. There is yet no algorithm that is both
optimally bound in both ¢ and e scaling. As stated previously, comparison of
algorithms is difficult to do in the general case. We have however outlined some
characteristics of the algorithms which give an insight into their properties. The
result of Berry et al. [5] is arguably the best algorithm we have currently, as it
is optimal in €, near optimal in ¢, and can support simulation of time-dependant
sparse Hamiltonians (which covers a large number of applications). The result
by Childs in contrast is optimal in ¢ but only applies for time-independent
Hamiltonians.

Childs has outlined a number of open questions and avenues for future
work [7]. An algorithm with all optimal dependence would be advantageous,
and particularly one that could apply to a wide range of Hamiltonian types
(non-sparse, time dependant etc...). Following from this, it would be useful
to start applying these algorithms to specific applications. This would require
a better understanding of possible applications and systems that may require
quantum simulation. A perhaps more distant step would be to implement some
of these algorithms on some small scale systems.

13

References

1]

R. Feynman, “Simulating physics
with computers,” International
Journal of Theoretical Physics,
vol. 21, no. 6, p. 467, 1982.

S. Lloyd, “Universal quantum
simulators,” Science, vol. 273,
no. 5278, pp. 1073-1078, 1996.

K. L. Brown, W. J. Munro, and
V. M. Kendon, “Using quantum
computers for quantum simula-
tion,” FEntropy, vol. 12, no. 11,
pp- 2268-2307, 2010.

K. De Raedt, K. Michielsen,
H. De Raedt, B. Trieu, G. Arnold,
M. Richter, T. Lippert, H. Watan-
abe, and N. Ito, “Massively par-
allel quantum computer simula-
tor,” Computer Physics Commu-
nications, vol. 176, no. 2, pp. 121—
136, 2007.

D. W. Berry, A. M. Childs, and
R. Kothari, “Hamiltonian simula-
tion with nearly optimal depen-
dence on all parameters,” arXiv
preprint arXiv:1501.01715, 2015.

A. M. Childs and R. Kothari,
“Limitations on the simulation of
non-sparse hamiltonians,” arXiv
preprint arXiv:0908.4398, 2009.

A. Childs, “Exponential improve-
ment in precision for simulat-
ing sparse hamiltonians,” A Pub-
lisher, 2014.

C. M. Dawson and M. A. Nielsen,
“The Solovay-Kitaev algorithm,”
arziv, 2005.

14

[9]

[10]

[12]

[15]

M. Suzuki, “General theory of
higher-order decomposition of ex-
ponential operators and symplec-
tic integrators,” Physics Letters
A, vol. 165, no. 5, pp. 387-395,
1992.

D. W. Berry, G. Ahokas, R. Cleve,
and B. C. Sanders, “Efficient
quantum algorithms for sim-
ulating sparse hamiltonians,”
Communications in Mathemat-
ical Physics, vol. 270, no. 2,
pp- 359-371, 2007.

D. Aharonov and A. Ta-Shma,
“Adiabatic quantum state gener-
ation and statistical zero knowl-
edge,” in Proceedings of the thirty-
fifth annual ACM symposium on
Theory of computing, pp. 20-29,
ACM, 2003.

D. W. Berry, A. M. Childs,
R. Cleve, R. Kothari, and R. D.
Somma, “Simulating hamilto-
nian dynamics with a truncated
taylor series,” arXiv preprint
arXiv:1412.4687, 2014.

R. Kothari, Efficient algorithms
m quantum query complexity.
PhD thesis, University of Water-
loo, Ontario, 2014.

D. W. Berry, A. M. Childs,
R. Cleve, R. Kothari, and R. D.
Somma, “Exponential improve-
ment in precision for simulating
sparse hamiltonians,” in Proceed-
ings of the 46th Annual ACM
Symposium on Theory of Comput-
ing, pp- 283-292, ACM, 2014.

A. M. Childs, D. W. Leung, and
G. Vidal, “Reversible simulation

[17]

of bipartite product hamiltoni-
ans,” Information Theory, IEEE
Transactions on, vol. 50, no. 6,
pp- 1189-1197, 2004.

A. M. Childs, “On the re-
lationship between continuous-
and discrete-time quantum walk,”
Communications in Mathematical
Physics, vol. 294, no. 2, pp. 581—
603, 2010.

D. W. Berry and A. M. Childs,
“Black-box hamiltonian simula-
tion and unitary implementa-
tion,” Quantum Info. Comput.,
vol. 12, pp. 29-62, Jan. 2012.

[18]

A. M. Childs and R. Kothari,
“Simulating sparse hamiltonians
with star decompositions,” in
Theory of Quantum Computation,
Communication, and Cryptogra-
phy, pp- 94-103, Springer, 2011.

A. M. Childs, “Exponential
improvement in precision for
simulating sparse hamiltonians.”
http://www.nist.gov/itl/
math/upload/slides_andrew_
childs.pdf, 2014. Presentation
given at the National Institute of
Standards and Technology.

15

http://www.nist.gov/itl/math/upload/slides_andrew_childs.pdf
http://www.nist.gov/itl/math/upload/slides_andrew_childs.pdf
http://www.nist.gov/itl/math/upload/slides_andrew_childs.pdf

	Introduction
	Quantum Simulation Algorithms
	Trotter Decomposition - Lloyd (1996)
	Sparse Matrix Simulation - Aharonov & Ta-Shma (2003)
	Truncated Taylor Series - Berry et al. (2014)
	Other Algorithms

	Discussion
	Conclusion

