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I. INTRODUCTION

One of the cornerstone results in computational com-
plexity theory is the Cook-Levin Theorem [1]: the theorem
that establishes that Boolean satisfiability problems are
NP-complete. A Boolean satisfiability problem (SAT)
asks the following question: given a set of clauses built
from literals (variables that take values “TRUE” and
“FALSE”), Boolean operators and parentheses, does there
exist an assignment of values for the literals such that
all clauses evaluate to TRUE? The Cook-Levin theorem
demonstrates, in some sense, that satisfiability problems
are the stereotypical set of NP problems. Specifically, SAT
is a problem in NP and there is at most a polynomial
overhead in reduction of other languages in NP to a
SAT problem. It is also worth pursuing what restrictions
can be made on the clauses such that this property of
NP-completeness remains; for example, if each clause
contains at most k literals (“k-SAT”). It was shown by
Karp [2] that 3-SAT is NP-complete, but 2-SAT was
shown by Krom [3] to be in P. This sharp jump in problem
complexity between 2-SAT and 3-SAT was generalised in
a pleasing result known as Schaefer’s dichotomy theorem
[4], which demonstrates this step-change in complexity
when the constraints imposed are drawn from a particular
set.

This narrative plays out in a surprisingly similar way
when the complexity classes under consideration are re-
lated to the power of quantum computers rather than
classical ones. The quantum equivalent of NP is known
as QMA (an initialism of “Quantum Merlin-Arthur”, a
name inspired by the “call and response” type protocol
that problems in this class are solved by). In this class, a
sender with unbounded computational resources (Merlin)
gives a poly-sized proof of an affirmative answer to a de-
cision problem to a receiver (Arthur). Arthur’s verification
protocol must then lie in BQP; that is, he must be able to
verify or reject Merlin’s proof with a quantum computer

with polynomial resources in polynomial time. One may
then ask whether there exists any problem that is QMA-
complete, and whether these are natural quantum equiv-
alents of problems that are known to be NP-complete.
Interestingly, in the same sense that a computational
problem in NP can be encoded as a satisfiability problem
for a set of constraints, a computational problem in QMA
can be encoded as the problem of finding a ground-state
of some local Hamiltonian given a set of constraints. This
problem, k-LocalHamiltonian, is the quantum analogue
of the Boolean satisfiability problems introduced above
(in particular, the analogue of k-MaxCSP, the problem of
identifying the maximum number of contraints satisified
when clauses have at most k literals in a general constraint
satisfaction problem). The k-LocalHamiltonian problem
was initially introduced by Kitaev [5]. In direct analogy
with k-MaxCSP, which is NP-complete for k ≥ 2, it can
be shown that k-LocalHamiltonian is QMA-complete for
k ≥ 2 [6].

In addition to the constraint of locality, it may be
of interest to consider constraints on the Hamiltonian
based on the physical quantum system it describes. This
is of great importance for adiabatic quantum computers,
as implementation of any QMA-complete Hamiltonian
is sufficient for universal adiabatic quantum computing
[7]. In [7], it was demonstrated that the Ising model can
be rendered QMA-complete with appropriate additional
couplings, and in [8] it was shown that the Heisenberg and
Hubbard models are QMA-complete in the case of physi-
cally local couplings. In a manner analogous to Schaefer’s
dichotomy theorem, these constraints have been recently
generalised in [9] to give a dichotomy in computational
complexity for physically realisable local Hamiltonians.

The structure of this essay is to expand on this narrative;
first, by giving a concise definition of both QMA and
the k-LocalHamiltonian problem and then by considering
Schaefer’s dichotomy theorem and its quantum equivalent.
Finally, the relevance of this work to adiabatic quantum
computing will be outlined.

II. QMA-COMPLETENESS

We begin with a formal definition of the complexity
class QMA. This class is phrased in a “call and response”
manner - Merlin provides a proof of a problem with a
promise that it is correct; Arthur must use a quantum
circuit and polynomial quantum resources in order to
accept correct proofs above a certain threshold probability
and to reject incorrect proofs below a certain threshold
probability.

Definition (QMA). A promise problem L = (Lyes∪Lno)
is in the complexity class QMA iff, given a string x ∈ Σ∗

of size |x| = n and a quantum proof |y〉 ∈ (C2)⊗poly(n)

from Merlin, Arthur checks given access to quantum
resources: the family of all quantum circuits that run in
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poly(n) time, {Qn}, and poly(n) ancillas. Then, Arthur
must:
• Verify correct proofs: if x ∈ Lyes, then there exists a

proof |y〉 such that Arthur accepts the pair (x, |y〉)
with probability at least 2/3.

• Reject incorrect proofs: if x ∈ Lno, then there exists
no proof |y〉 such that Arthur accepts the pair (x, |y〉)
with probability more than 1/3.

A problem is QMA-complete if it is both QMA-
hard (that is, any problem in QMA can be reduced to
it with polynomial overhead) and it is itself in QMA.
Any problem that is QMA-complete is likely to require
superpolynomial time to evaluate on both classical and
quantum hardware.

There are a few notable relationships between QMA
and other complexity classes. Firstly, it is clear that
NP ⊆ MA ⊆ QMA, as the only difference between
the three classes is the computational power of Arthur
(deterministic classical computation, probabilistic classi-
cal computation and quantum computation, respectively).
Secondly, it was shown by Kitaev and Watrous that QMA
is in PP [10].

III. K-LocalHamiltonian

The first QMA-complete problem to be discovered took
its cue from the Cook-Levin theorem, as it is in some
sense the most natural quantum equivalent of a constraint
satisfaction problem. The problem concerns ‘emphlocal
Hamiltonians; that is, ones that can be written

H =

m∑
i=1

Hi, (1)

where each Hi acts on at most k qubits for the Hamil-
tonian to be considered k-local. The k-LocalHamiltonian
problem is then defined as follows:

Definition (k-LocalHamiltonian). Consider a k-local
Hamiltonian acting on a set of m qubits; i.e. H =∑k

i=0Hi for k = poly(m), each Hi acts non-trivially on
no more than k qubits, and each Hi has bounded norm
‖Hi‖ ≤ poly(m). Then an instance of the problem k-
LocalHamiltonian is a promise problem; either:
• Verify that H has an eigenvalue less than a, or
• Verify that H has no eigenvalue less than b,

under the promise that one of these is true and with
condition that a− b ≤ poly(m).

The connection to classical constraint satisfaction can
be made explicit; in fact, it is straightforward to show that
CSP problems can be encoded in a local Hamiltonian.
For example, consider an instance Ψ of, say, k-CSP with
clauses ci that evaluate to a constant Boolean value. Then
construct a Hamiltonian with terms that give an energy
penalty to constraint-violating assignments, i.e. add terms
like

Hi =
∑

x∈{0,1}k
s.t.ci(x)=0

|x〉 〈x| . (2)

Then, an assignment that satisfies all constraints en-
coded in a state |y〉 will be a eigenstate of energy
with eigenvalue 0 (as it is a computational basis state

orthogonal to every |x〉 in the formula above), whereas
any state that encodes a non-satisfying assignment will
have non-zero energy. Therefore finding the ground state
of the k-local Hamiltonian written here will be a state that
satisfies Ψ.

The problem k-LocalHamiltonian was first shown to
be QMA-complete by Kitaev for k ≥ 5 [5]; this was
later refined by Kempe, Kitaev and Regev to show QMA-
completeness for k ≥ 2. A physicist may then ask: if the
Hamiltonian is restricted further by now introducing a set
of constraints given instead by physics, does the problem
of finding ground states of that Hamiltonian remain QMA-
complete? There are case-by-case answers to this question
for a handful of physical Hamiltonians. For example, the
problem is still QMA-complete for qubits arranged on a
line with only nearest neighbour interactions [11] and is
still QMA-complete if the qubits are arranged on a square
lattice [12]. One can also restrict the physicality of the
qubits themselves; the problem is still QMA-complete if
the qubits are bosons [13] or fermions [14].

IV. SCHAEFER’S DICHOTOMY THEOREM

The generalisation of the handful of results on QMA-
completeness for physically restricted local Hamiltoni-
ans is introduced in the next section as the “quantum
dichotomy theorem”. However, the quantum dichotomy
theorem is heavily inspired by a classical counterpart
concerned with the characterisation of the hardness of
constraint satisfaction problems known as “Schaefer’s
dichotomy theorem”. Given the significance of this result,
it is presented here first.

The form of the dichotomy theorem presented by
Schaefer [4] is as follows:

Theorem 1 (Schaefer’s Dichotomy Theorem). Given a set
S of constraints over the Boolean domain, define an in-
stance of the class CSP(S) as a conjunction of constraints
drawn from S on a set of propositional variables. Then,
provided that S satisfies any of the following conditions,
the problem of checking satisfiablity of the instance is in
P:
• All constraints in S which aren’t constantly false are

true when all its arguments are true.
• All constraints in S which aren’t constantly true are

false when all its arguments are false.
• All constraints in S are equivalent to a conjunction

of binary clauses.
• All constraints in S are equivalent to a conjunction

of Horn clauses.∗

• All constraints in S are equivalent to a conjunction
of dual-Horn clauses.†

• All constraints in S are equivalent to a conjunction
of affine clauses.‡

If none of these conditions hold for S, then the class
CSP(S) is NP-complete.

The dichotomy theorem is particularly surprising given
the ubiquity of constraint satisfaction problems and a
separate result by Ladner:

∗A Horn clause is a clause with at most one positive literal.
†A dual Horn clause is a clause with at most one negated literal.
‡An affine clause is defined by Schaefer as a clause composed

exclusively of literals and ⊕, the XOR operation, such that it evaluates
to a constant Boolean value.
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Theorem 2 (Ladner’s Theorem). Provided that P 6= NP,
then there exist problems in NP that are neither in P, nor
are NP-complete.

At first glance, this appears contradictory - Schaefer’s
theorem appears to state that there are no constraint
satisfaction problems that lie in the NP-intermediate space
defined by Ladner. The resolution of the contradiction is
that the instances generated by Schaefer, i.e. instances
generated by conjunction and substitution of propositional
variables, form a somewhat special set of problems (and
cannot be used to encode a general SAT problem). How-
ever, this caveat should not be taken to mean that Schae-
fer’s theorem is only concerned with a peculiar class of
problems. It is a very strong result; for example, it implies
the NP-completeness of 3-SAT and that HORN− SAT
(satisfiability with Horn clauses) is in P, for example.
That this dichotomy exists at all for constraint satisfaction
problems is a remarkable result.

V. THE QUANTUM DICHOTOMY THEOREM

Inspired by the result of Schaefer and the connection
between satisfaction problems and k-LocalHamiltonian,
Cubitt and Montanaro [9] recently developed a quantum
dichotomy theorem that establishes step-changes in the
complexity of physically constrained, local Hamiltonian
problems. The form of the quantum dichotomy theorem
as presented in [9] is the following:

Theorem 3 (The quantum dichotomy theorem). Define
the set S to be an arbitrary set of Hermitian matri-
ces acting on no more than 2 qubits. Given this set
S, define the problem S-Hamiltonian in the following
way: S-Hamiltonian is a special case of the problem k-
LocalHamiltonian where the Hamiltonian is now given as
a summation of terms αiHi ∈ S, where αi ∈ R ∀i.

Then the following dichotomy holds:

• If every matrix in S is 1-local, then S-Hamiltonian
is in P.

• Otherwise, if S is locally diagonalised by a matrix
U ∈ SU(2), then S-Hamiltonian is NP-complete.

• Otherwise, if ∃ a matrix U ∈ SU(2) such that
for all 2-qubit gates Hi ∈ S, U⊗2HiU

⊗2† =
αiZ

⊗2 +Ai1 + 1Bi (where αi ∈ R and Ai, Bi are
arbitrary single-qubit gates), then the complexity of
S-Hamiltonian is TIM-complete, where TIM is the
complexity class of the Ising model with transverse
external magnetic field.

• If none of the above hold, then S-Hamiltonian is
QMA-complete.

This dichotomy theorem subsumes many of the indi-
vidual cases stated previously. In particular, the QMA-
completeness of the Heisenberg model as shown by
Schuch and Verstraete [8] is a specific case of this result.§

It also subsumes the result by Biamonte and Love [7] that
the XY Hamiltonian is QMA-complete. It also settles the
complexity of a large list of Hamiltonians with couplings
previously untouched in the literature.

§In fact, the Hamiltonian considered in [8] was the Heisenberg Hamil-
tonian with the allowance of arbitrary 1-local terms. The dichotomy
theorem demonstrates the QMA-completeness of the Heisenberg model
both with and without this additional allowance.

Much like Schaefer’s construction of CSP(S) had lim-
ited scope compared to general satisfaction problems, the
quantum dichotomy theorem does not cover all cases of
Hamiltonian problems with . For example, Bravyi’s work
concerning the complexity of stoquastic Hamiltonians [15]
does not fit exactly into the S−Hamiltonian scheme, and
the results concerning the QMA-completeness of bosonic
and fermionic systems [13], [12] remain independent.

VI. ADIABATIC QUANTUM COMPUTING AND
UNIVERSALITY

The final section of this paper is to remark on the rele-
vance of this discussion for adiabatic quantum computing.

Adiabatic quantum computation [16] is the “slow”
evolution of a Hamiltonian from some easily preparable
form, H0, to a form Hs that encodes the answer to some
computationally difficult problem, whilst maintaining the
state in the lowest energy configuration. For example,
consider the time-dependent Hamiltonian

H(t) = (1− t

T
)H0 +

t

T
Hs, (3)

where H0 is some easily manufactured Hamiltonian and
Hs is the example Hamiltonian given in equation 2 for
solving SAT instances. As the Hamiltonian evolves from
t = 0 to t = T , provided that the evolution is slow
enough then the system remains equilibrated in its ground
state (a result known as the adiabatic theorem). The
speed at which the Hamiltonian can be evolved depends
on the minimum energy gap between the ground state
and the first excited state (here written as gmin)). If the
instantaneous eigenvalues and eigenstates of H(t) are
given by El(t) and |l, t〉, respectively, then the condition
for adiabaticity is given by

T �
maxt | 〈1, t/T |dHdt |0, t/T 〉 |
mint(E1(t/T )− E0(t/T ))

:=
E

g2min

, (4)

a proof of which is in [16]. An optimistic reader might
hope that this scheme is sufficient for finding answers
to NP-hard problems, where the evolution moves slowly
enough to retain adiabaticity but fast enough that solutions
are found efficiently. However, in [17] it was shown
that there is a polynomial equivalence between adiabatic
quantum computing and the standard, gate-based model
of quantum computing.¶ The proof of this statement is
predicated on two things: firstly, that the spectral gap
gmin only increases inverse polynomially with the size
of the problem; and secondly, that the Hamiltonian used
to encode solutions is local.

This is, ultimately, where the interest from imple-
menters of adiabatic quantum computing in QMA-
complete Hamiltonians stems. Any adiabatic quantum
computing platform that can encode a QMA-complete
Hamiltonian problem can encode any other Hamil-
tonian problem in QMA, including the problem k-
LocalHamiltonian. By the result in [17], this is then
enough to be universal for quantum computation. This
is also part of the motivation for considering physically
constrained Hamiltonians like those in [11], [12], [13],

¶The term “polynomial equivalence” is used to mean that adiabatic
and gate-based quantum computing can simulate each other with only a
polynomial overhead.
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[14], and ultimately those that are the motivation for the
quantum dichotomy theorem.

The recipe the quantum dichotomy theorem gives from
the perspective of adiabatic quantum computing is as
follows: from any physically implemented Hamiltonian,
reconstruct the corresponding set of Hermitian matrices
S. Then provided that S-LocalHamiltonian is QMA-
complete, implementing this Hamiltonian as Hs is enough
to be universal for quantum computation.

Interestingly, it is unclear from the literature what the
computational power is of an adiabatic quantum computer
that can only encode an “easier” Hamiltonian in Hs.
Specifically, the interest is in the class TIM, as Ising
models with transverse magnetic fields are readily im-
plementable in practice and form the basis of D-Wave’s
prototype quantum computing devices [18].

An indication of the answer to this question is provided
by Hastings in [19]. Here, the systems under consider-
ation are adiabatic quantum computers with Hs given
by a local Hamiltonian without a “sign problem” (also
known as “stoquastic”); i.e. Hamiltonians whose off-
diagonal elements are all negative. In can be shown that
TIM ⊆ StoqMA, the set of local Hamiltonian problems
where the Hamiltonian is assumed to be stoquastic. It
does not appear to be an unreasonable conjecture that
restricting Hs to be stoquastic is enough to hamstring
the computational power of an adiabatic quantum com-
puter; say, to conjecture that its computational power is
restricted to solving problems in BPP. While [19] gives
no definite answer to this question, it does give a strong
indication that this conjecture is untrue. Specifically, the
claim is that the most straightforward way to show that
the power of the adiabatic quantum computer is reduced
is to take a classical probabilistic algorithm for evaluating
ground-state energies of some Hamiltonian (here, the
algorithm considered is a path integral quantum Monte
Carlo method), and to show that it is just as efficient as the
adiabatic algorithm when the Hamiltonian is stoquastic.
Hastings explicitly shows that this is not the case, by
constructing counterexamples where the quantum Monte
Carlo method fails to equilibrate efficiently.

On the other hand, a recent result by Bravyi [15]
indicates some restriction on the computational power
of an adiabatic quantum computer given a stoquastic
Hamiltonian. This work approaches the problem from a
similar tack as that by Hastings, with the modification that
the classical probabilistic algorithm under consideration
is now a diffusion Monte Carlo algorithm rather than a
path integral approach. Whilst the setting is very similar,
Bravyi also makes another large assumption not made
by Hastings. The added assumption is the inclusion of
a “guiding state”; that is, that there is a readily preparable
state |φg〉 with non-negligible overlap with the ground-
state of the stoquastic Hamiltonian; if this ground-state is
|ψ0〉 then

〈x|φg〉 ≥
〈x|ψ0〉
poly(n)

for all n-bit binary strings x. (5)

Whilst this may seem like a strong restriction to place
on the problem, an assumption of this flavour is made at
the beginning of the quantum phase estimation algorithm
(although there, the assumption is only that there exists a

guiding state with non-negligible overlap with the ground-
state, and not the stronger, pointwise correlation that is
given above). Whether an arbitrary stoquastic Hamiltonian
admits a guiding state is not obvious, although the claim
by Bravyi is that it appears unlikely. The main result of
this work is that, with the inclusion of the guiding state,
the complexity class of the k-LocalHamiltonian problems
that are both guided and stoquastic is in MA and is
MA-complete for k ≥ 6, as opposed to QMA-complete
without the added restrictions of guiding and stoquastic-
ity. A corollary of the mathematics used to derive this
result is that a ferromagnetic TIM Hamiltonian, i.e. a
TIM Hamiltonian where the spin-coupling coefficients are
all non-negative, admits an approximation scheme with
polynomial runtime on a probabilistic computer.

These results clearly give no definitive answers on the
complexity of TIM Hamiltonians, and therefore give no
definitive answer on the universality of current adiabatic
quantum computing implementations. The sentiment for
builders of adiabatic quantum computers is still the same -
encode a provably QMA-complete Hamiltonian in Hs; for
example, the 2-local Hamiltonians discussed by Biamonte
and Love [7] or the examples discussed in the context
of the quantum dichotomy theorem, in order to ensure
universality.

VII. OPEN QUESTIONS

There are at least two immediate avenues for further
work. As mentioned previously, the construction of the
S−Hamiltonian problem is not of infinite scope and fails
to capture a handful of physically relevant Hamiltonians.
Since the quantum dichotomy theorem takes its inspiration
from Schaefer, it might be worth pursuing generalisations
of Schaefer’s result that already exist in the literature and
then teasing out their implications for the quantum case.
For example, in [20] Schaefer’s dichotomy theorem is
modified such that the constraints are built from proposi-
tional logic on graphs rather than Boolean logic.

Secondly, the settling of the debate on the complexity
of the class TIM is of relevance both from the point of
view of the dichotomy theorem and, as discussed above,
for implementations of adiabatic quantum computing. It
seems unlikely that TIM will be either “easy enough” or
“hard enough” for the dichotomy to collapse, but it may
be the case that TIM ⊇ MA, for example.
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