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1. Factoring via phase estimation. Fix two coprime positive integers x and N such that
x < N , and let Ux be the unitary operator defined by Ux|y〉 = |xy (mod N)〉. Let r be the
order of x mod N (the minimal t such that xt ≡ 1). For 0 ≤ s ≤ r − 1, define the states

|ψs〉 :=
1√
r

r−1∑
k=0

e−2πisk/r |xk (mod N)〉.

(a) Verify that Ux is indeed unitary.

(b) Show that, for arbitrary integer n ≥ 0, U2n
x can be implemented in time poly(n) (not

poly(2n)!).

(c) Show that each state |ψs〉 is an eigenvector of Ux with eigenvalue e2πis/r.

(d) Show that

1√
r

r−1∑
s=0

|ψs〉 = |1〉.

(e) Thus show that, if the phase estimation algorithm with n qubits is applied to Ux using
|1〉 as an “eigenvector”, the algorithm outputs an estimate of s/r accurate up to n bits,
for s ∈ {0, . . . , r − 1} picked uniformly at random, with probability lower bounded by a
constant.

(f) Argue that this implies that the phase estimation algorithm can be used to factorise an
integer N in poly(logN) time.

2. More efficient quantum simulation.

(a) Let A and B be Hermitian operators with ‖A‖ ≤ K, ‖B‖ ≤ K for some K ≤ 1. Show
that

e−iA/2e−iBe−iA/2 = e−i(A+B) +O(K3)

(this is the so-called Strang splitting). Use this to give a more efficient approximation
of k-local Hamiltonians by quantum circuits than the algorithm given in the notes, and
calculate its complexity.

(b) Let H be a Hamiltonian which can be written as H = UDU †, where U is a unitary
matrix that can be implemented by a quantum circuit running in time poly(n), and
D =

∑
x d(x)|x〉〈x| is a diagonal matrix such that the map |x〉 7→ e−id(x)t|x〉 can be

implemented in time poly(n) for all x. Show that e−iHt can be implemented in time
poly(n).
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3. Other definitions of quantum walks. In some sense, random walks require less space
than quantum walks. A random walk on a graph for t steps can be concisely expressed as
applying the t’th power of a matrix M to a vector. However, quantum walks as defined in this
course use an additional coin. A simpler way to define a quantum walk in such a way that
it respects the structure of a graph G with n vertices would be as repeated application of an
n-dimensional unitary matrix U such that Uxy = 0 if and only if x and y are not connected.
In other words, if A is the adjacency matrix of G (Axy = 1 if x and y are connected, Axy = 0
otherwise), Uxy 6= 0⇔ Axy = 1. Call such quantum walks concise.

(a) Consider the line with n vertices (i.e. vertices are numbered between 1 and n; vertices
x and y are connected if |x − y| = 1). Show that no concise quantum walk can exist
on this graph when n is odd, and that when n is even, any concise quantum walk only
involves interactions between positions (2k − 1, 2k) for integer k ≥ 1.

(b) However, show that the hypercube does admit a concise quantum walk with non-trivial
behaviour. (Hint: the adjacency matrix An of the dimension n hypercube can be written
as

An =

(
An−1 I2n−1

I2n−1 An−1

)
,

where Id is the d-dimensional identity matrix.)

An alternative way to define a “concise” quantum walk on a graph, which is closer
in spirit to classical continuous-time random walks, is as follows. For a graph with
adjacency matrix A, and an arbitrary real time t, simply define the unitary matrix
U(t) = e−iAt, and define the amplitude of being at vertex y, given that the walk started
at x and proceeded for time t, as 〈y|U(t)|x〉.

(c) Show that the adjacency matrix of the n-dimensional hypercube can be written as An =∑n
j=1X

(j), where X(j) denotes the operator which is a tensor product of X = ( 0 1
1 0 )

acting on the j’th qubit, and the identity elsewhere.

(d) Hence show that U(t) = e−iAnt factorises into a tensor product of 2×2 unitary matrices.

(e) Hence show that there is a constant time t at which 〈1n|U(t)|0n〉 = 1, up to an overall
phase, implying that this notion of quantum walk also admits fast hitting from vertices
0n to 1n on the hypercube.

4. Quantum channels.

(a) Write down a Kraus representation for the channel Tr which maps ρ 7→ tr ρ.

(b) Given two channels E1, E2, with Kraus operators {E(1)
k }, {E

(2)
k }, what is the Kraus

representation of the composite channel E2 ◦ E1 which is formed by first applying E1,
then applying E2?

(c) What is the result of applying the amplitude damping channel to the superposition
1√
2
(|0〉+ |1〉)?

(d) What is the the representation of the amplitude damping channel as an affine map on
the Bloch ball? What does this “look like” in terms of its effect on the Bloch ball?
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