ADVANCED QUANTUM INFORMATION THEORY

Exercise sheet 3

Ashley Montanaro, University of Bristol ashley.montanaro@bristol.ac.uk

1. Factoring via phase estimation. Fix two coprime positive integers x and N such that x < N, and let U_x be the unitary operator defined by $U_x|y\rangle = |xy \pmod{N}\rangle$. Let r be the order of x mod N (the minimal t such that $x^t \equiv 1$). For $0 \le s \le r - 1$, define the states

$$|\psi_s\rangle := \frac{1}{\sqrt{r}} \sum_{k=0}^{r-1} e^{-2\pi i s k/r} |x^k \pmod{N}\rangle.$$

- (a) Verify that U_x is indeed unitary.
- (b) Show that, for arbitrary integer $n \ge 0$, $U_x^{2^n}$ can be implemented in time polynomial in n and log N (not polynomial in 2^n !).
- (c) Show that each state $|\psi_s\rangle$ is an eigenvector of U_x with eigenvalue $e^{2\pi i s/r}$.
- (d) Show that

$$\frac{1}{\sqrt{r}}\sum_{s=0}^{r-1}|\psi_s\rangle = |1\rangle$$

- (e) Thus show that, if the phase estimation algorithm with n qubits is applied to U_x using $|1\rangle$ as an "eigenvector", the algorithm outputs an estimate of s/r accurate up to n bits, for $s \in \{0, \ldots, r-1\}$ picked uniformly at random, with probability lower bounded by a constant.
- (f) Argue that this implies that the phase estimation algorithm can be used to factorise an integer N in poly(log N) time.

2. More efficient quantum simulation.

(a) Let A and B be Hermitian operators with $||A|| \leq K$, $||B|| \leq K$ for some $K \leq 1$. Show that

 $e^{-iA/2}e^{-iB}e^{-iA/2} = e^{-i(A+B)} + O(K^3)$

(this is the so-called *Strang splitting*). Use this to give a more efficient approximation of k-local Hamiltonians by quantum circuits than the algorithm given in the notes, and calculate its complexity.

(b) Let H be a Hamiltonian which can be written as $H = UDU^{\dagger}$, where U is a unitary matrix that can be implemented by a quantum circuit running in time poly(n), and $D = \sum_{x} d(x)|x\rangle\langle x|$ is a diagonal matrix such that the map $|x\rangle \mapsto e^{-id(x)t}|x\rangle$ can be implemented in time poly(n) for all x. Show that e^{-iHt} can be implemented in time poly(n).