
Part III Michaelmas 2012

COMPUTATIONAL COMPLEXITY

EXERCISE SHEET 1: Turing machines

Ashley Montanaro, DAMTP Cambridge

am994@cam.ac.uk

1. Show that each of the following “generalisations” of the Turing machine model can be simu-

lated e�ciently by a standard Turing machine.

(a) A Turing machine defined in the same way as normal, but with a two-way infinite tape.

The head starts at position 0 and can move arbitrarily far in either direction (by at most

one position at each step).

(b) A Turing machine with a 2-dimensional, one-way infinite “tape”. The head starts at

position (0, 0) and can move arbitrarily far down or right. At each step, the head can

move at most one position up, down, left or right.

2. For the purposes of this question, say that a variant of the Turing machine is equivalent to

the standard Turing machine if the set of languages L ✓ {0, 1}⇤ that can be decided by the

variant model is the same as the set of languages that can be decided by the standard model.

Is each of the following variants of the Turing machine equivalent to the standard Turing

machine?

(a) A Turing machine which operates on a two-way infinite tape, and can move arbitrarily far

in each direction. That is, the transition function is of the form � : K⇥⌃! K⇥⌃⇥Z,
where the last integer specifies how far to move to the right (if positive), or left (if

negative).

(b) A Turing machine operating on the infinite alphabet ⌃ = N.
(c) A Turing machine which cannot stay still. That is, the transition function is of the form

� : K ⇥ ⌃! K ⇥ ⌃⇥ { ,!}.
(d) A Turing machine which cannot move left. That is, the transition function is of the form

� : K ⇥ ⌃! K ⇥ ⌃⇥ {�,!}.

3. Let L be a language such that |L| is finite. Show that L is decidable.

4. Let L1, L2 be decidable (resp. recognisable) languages. Are the languages L1[L2 and L1\L2

necessarily decidable (resp. recognisable)?

5. Is Halt recognisable? Let Halt be the language defined by

Halt = {(M,x) : M is a Turing machine that does not halt on input x }.

Is Halt recognisable?

1

6. For any Turing machine M , let L(M) denote the language recognised by M . Let S be a set

of languages, and let LS be the language

LS = {M : L(M) 2 S}.

That is, LS is the set of Turing machines that recognise languages in S. Show that LS is

either trivial or undecidable. Conclude that the language

Lk = {M : |L(M)| = k}

is undecidable for any k. In other words, for any k it is undecidable whether, given a Turing

machine M , M accepts exactly k inputs.

2

Part III Michaelmas 2012

COMPUTATIONAL COMPLEXITY

EXERCISE SHEET 2: Time complexity

Ashley Montanaro, DAMTP Cambridge

am994@cam.ac.uk

1. To get some practice with big-O notation, prove or disprove the following assertions.

(a) If f(n) = nk and g(n) = cn, for some constants c > 1, k � 0, then f(n) = o(g(n)).

(b) If f(n) = ⇥(g(n)), then 2f(n) = ⇥(2g(n)).

(c) f(n) = 2⇥(logn) if and only if f(n) = poly(n).

(d) If f(n) = O(n) and g(n) = ⇥(n), then:

i. f(n) + g(n) = O(n);

ii. f(n)g(n) = O(n2);

iii. f(n)� g(n) = O(1);

iv. f(n)
g(n) = O(1).

2. Let T (n) be defined recursively by T (1) = 1, and T (n) = c T (dn/2e) + d for some constants
c, d > 1. Show that T (n) = ⇥(nlog2 c).

3. Give examples of functions f , g such that neither f(n) = O(g(n)), nor f(n) = ⌦(g(n)).

4. Prove that T (n) = 2n is time-constructible.

5. Give an example (not necessarily explicit) of a function T : N ! N such that T (n) � n and
T (n) is not time-constructible.

6. Prove the claim in the notes that polynomial-time reductions compose: if A P B, and
B P C, then A P C.

7. Given two strings a, b 2 ⌃⇤, a common subsequence of a and b is a sequence of symbols
which is a subsequence of both a and b. For example, abara is a common subsequence
of abracadabra and barbarian. Give an algorithm which outputs the maximal length of a
common subsequence of two strings in polynomial time.

1

Part III Michaelmas 2012

COMPUTATIONAL COMPLEXITY

EXERCISE SHEET 3: NP

Ashley Montanaro, DAMTP Cambridge

am994@cam.ac.uk

1. Given languages L1,L2 2 NP, prove that L1 \ L2 2 NP, L1 [L2 2 NP.

2. Given languages L1 ✓ L2 such that L1 2 NP, L2 2 NP, is L2\L1 2 NP?

3. Show that, if P = NP, then any non-trivial language L 2 P is NP-complete.

4. Let Unary Primes be the following language.

Unary Primes = {1n : n is prime}.

Prove that, if Unary Primes is NP-complete, then P = NP.

5. Prove that ; is not NP-complete.

6. Let DNF-SAT be the variant of SAT where the input is required to be a boolean formula

in DNF, rather than CNF. Prove that DNF-SAT 2 P, and consider the following claim: As

CNF formulae can be converted into DNF formulae using De Morgan’s laws, P = NP. Is this
claim correct?

7. Prove that Halt is NP-hard. Is it NP-complete?

8. Prove that, for any ✏ > 0, there exists an NP-complete language which can be decided in time

O(2

n✏
). (“There exist almost arbitrarily easy NP-complete problems.”)

1

Part III Michaelmas 2012

COMPUTATIONAL COMPLEXITY

EXERCISE SHEET 4: NP-completeness

Ashley Montanaro, DAMTP Cambridge

am994@cam.ac.uk

1. Prove that each of the following problems is NP-complete.

(a) 0-1 Integer Programming. Given a list of linear inequalities over n variables with

integer coe�cients, is there an assignment of 0’s and 1’s to the variables that satisfies

all the inequalities? For example, the inequalities

3x1 � x2 + x3 � 1

�x1 + 2x3  2

are satisfied by setting x1 = 1, x2 = 0, x3 = 1.

(b) Hamiltonian Cycle. Given a directed graph G, is there a cycle which includes each

vertex of G exactly once?

(c) 3-colouring. Given an undirected graph G, does there exist an assignment of at most

3 colours to the vertices of G, such that adjacent vertices are assigned di↵erent colours?

2. Consider the following variants of the SAT problem. In each case, either show that the

problem is in P or that it is NP-complete, as appropriate.

(a) The special case of 3-SAT where each variable appears at most three times in the input

formula.

(b) The special case of 3-SAT where each variable appears at most twice in the formula.

(c) The variant of SAT where a clause is unsatisfied if and only if the literals in the clause

either all evaluate to true, or all evaluate to false. For example, the clause (x1,¬x2) is
satisfied by the assignment x1 = 1, x2 = 1 and the assignment x1 = 0, x2 = 0.

(d) The variant of 3-SAT where each clause is satisfied if and only if an odd number of

literals in the clause evaluate to true. For example, the clause (x1,¬x2, x3) is satisfied

by x 2 {000, 011, 110, 101}.

3. Is each of the following special cases of NP-complete problems in P or NP-complete?

(a) Undirected Hamiltonian Path. Given an undirected graph G, does there exist a

path which visits each vertex exactly once?

(b) 2-colouring. Given an undirected graph G, does there exist an assignment of at most

2 colours to the vertices of G, such that adjacent vertices are assigned di↵erent colours?

(c) Clique of size 100. Given an undirected graph G, does it contain a clique of size at

most 100?

1

Part III Michaelmas 2012

COMPUTATIONAL COMPLEXITY

EXERCISE SHEET 5: P vs. NP and beyond

Ashley Montanaro, DAMTP Cambridge

am994@cam.ac.uk

Starred questions are likely to be more challenging/interesting.

1. Prove that P ✓ NP \ co-NP, and that if P = NP, NP = co-NP.

2. Prove that co-NP ✓ PSAT
.

3. Prove that, if P = NP, EXP = NEXP.

4. Prove that, if P = NP, then PH = P – “the polynomial hierarchy collapses”.

5. Let Smallest Formula be the following problem. Given a boolean formula � in CNF, and

an integer k, does there exist a CNF formula �0
such that �0

contains at most k symbols, and

�0
computes the same function as �? Prove that Smallest Formula 2 ⌃2.

6. (?) Give an explicit algorithm for SAT which, given a boolean formula �, outputs a satisfy-

ing assignment for � in polynomial time, assuming that P = NP. If there is no satisfying

assignment, the algorithm can behave arbitrarily.

1

Part III Michaelmas 2012

COMPUTATIONAL COMPLEXITY

EXERCISE SHEET 6: Space complexity

Ashley Montanaro, DAMTP Cambridge

am994@cam.ac.uk

Starred questions are likely to be more challenging/interesting.

1. Show that, if A 2 NL and B is any non-trivial language, A P B. That is, almost every
language B is NL-hard under polynomial-time reductions.

2. Prove composability of log-space reductions: i.e. that, if A L B and B L C, A L C.

3. Let L be the language of properly nested parentheses. For example, (()) and (()(()())) are in
L but)(is not. Show that L 2 L.

4. Prove the claim in the lecture notes that, if the read-once restriction is removed from the
definition of NL, the resulting class is equal to NP.

5. Assuming the Immerman-Szelepcsényi Theorem, prove that 2-SAT 2 NL.

6. Prove that P 6= SPACE(n). [Hint: you need not show that either class contains the other.]

7. (?) For any directed graph G, consider the following two-player game. Starting at a given
node v and with player 1, players take it in turns to pick an arc from the current node to a
node which has not yet been visited. If there is no arc from the current node to an unvisited
node, the current player loses. For example, on the following graph, starting with node v,
player 1 can always win.

v

Show that the following problem is PSPACE-complete: given a graph G and node v, determine
whether player 1 can win when starting from node v.

1

Part III Michaelmas 2012

COMPUTATIONAL COMPLEXITY

EXERCISE SHEET 7: Randomised algorithms

Ashley Montanaro, DAMTP Cambridge

am994@cam.ac.uk

Starred questions are likely to be more challenging/interesting.

1. Prove that PP ✓ PSPACE.

2. Imagine we generalise the definition of BPP to a class BPP✏,� defined as follows. Letting M
be a PTM as in the standard definition, we say that L 2 BPP✏,� if there exists an M such

that:

• For all x 2 L, Pr[M(x) = 0]  ✏;

• For all x /2 L, Pr[M(x) = 1]  �.

Thus BPP = BPP 1
3 ,

1
3
.

(a) What are the classes BPP0,0 and BPP 1
2 ,

1
2
?

(b) Show that BPP 1
2 ,0

✓ NP.

(c) Show that BPP2�|x|,2�|x| = BPP.

(d) What is the class BPP
2�2|x| ,2�2|x|?

3. Imagine we generalise the definition of BPP by allowing the PTM to run in expected time

polynomial in the input size. That is, the expected running time of the PTM is polynomial

on every input (but sometimes, depending on its internal randomness, it might run for much

longer). Does this change the definition of BPP?

4. (?) Modify the randomised algorithm for k-SAT to give a randomised algorithm which deter-

mines with worst-case success probability at least 0.99 whether a graph G with n vertices can

be properly 3-coloured. Prove that your algorithm runs in time O((3/2)n poly(n)), beating
the näıve algorithm of exhaustively trying every possible colouring, which takes time ⌦(3

n
).

5. (?) Give alternative non-trivial randomised and deterministic algorithms for 3-colouring.

Possible examples include a di↵erent randomised algorithm for 3-colouring which uses time

O((3/2)n poly(n)), and a deterministic algorithm which uses time O(1.94n poly(n)).

1

Part III Michaelmas 2012

COMPUTATIONAL COMPLEXITY

EXERCISE SHEET 8: Counting complexity

Ashley Montanaro, DAMTP Cambridge

am994@cam.ac.uk

Starred questions are likely to be more challenging/interesting.

1. Give a parsimonious reduction from SAT to 3-SAT.

2. Let #DNF denote the problem of counting the number of satisfying assignments to a boolean

formula in disjunctive normal form. Prove that #DNF is #P-complete.

3. (?) Prove that counting the number of matchings (not necessarily perfect) in a bipartite graph

is #P-complete.

4. Assuming (3), prove that #2-SAT is #P-complete.

1

Part III Michaelmas 2012

COMPUTATIONAL COMPLEXITY

EXERCISE SHEET 9: Circuit complexity

Ashley Montanaro, DAMTP Cambridge

am994@cam.ac.uk

Starred questions are likely to be more challenging/interesting.

1. Prove that ACd ✓ NCd+1 for any d � 0.

2. Prove that NC1 ✓ L.

3. Given two n ⇥ n boolean matrices A and B (i.e. matrices which contain only 0’s and 1’s),
define the boolean matrix product

(A �B)ij =
n_

k=1

(Aik ^Bkj).

Also define the problem “BMM” as follows: given two n⇥ n boolean matrices A and B, and
integers s and t such that 1  s, t  n, determine whether (A �B)st = 1.

(a) Show that BMM 2 AC0.

(b) Show that, given an n⇥n boolean matrix A, and any integer k = O(log n), the problem of

determining whether (A�2k)st = 1 is in AC1. Here A�2k is the 2k-fold product A�A�· · ·�A.

(c) Conclude that NL ✓ AC1.

4. (?) Let 1UN-SAT be the special case of SAT where every clause contains at most one un-
negated variable (for example, x1^(x2_¬x3_¬x4)^(¬x1_x2) is a valid 1UN-SAT instance).
Prove that 1UN-SAT is P-complete.

1

Part III Michaelmas 2012

COMPUTATIONAL COMPLEXITY

EXERCISE SHEET 10: Decision trees

Ashley Montanaro, DAMTP Cambridge

am994@cam.ac.uk

Starred questions are likely to be more challenging/interesting.

1. Assume that f : {0, 1}n ! {0, 1} depends only on the Hamming weight of the input: f(x) =
g(wt(x)) for some g : {0, . . . , n} ! {0, 1}. Show that either D(f) = 0 or D(f) = n.

2. Given a function f : {0, 1}n ! R, describe how to write down a representation of f as a
multilinear polynomial. Show that this polynomial is unique.

3. Consider the function f : {0, 1}n ! {0, 1} defined by

f(x) =

(
1 if x contains two consecutive 1’s

0 otherwise.

Show that D(f) = n� 1 if n ⌘ 1 mod 3, and D(f) = n otherwise.

4. Consider the function MAJ : {0, 1}3 ! {0, 1} defined by

MAJ(x) =

(
1 if wt(x) � 2

0 if wt(x)  1.

For arbitrary integer k > 1, we define the function MAJ(k) : {0, 1}3k ! {0, 1} recursively by
MAJ(k)(x) = MAJ(MAJ(k�1)(x1),MAJ(k�1)(x2),MAJ(k�1)(x3)), where the input x is parti-
tioned into three consecutive blocks x1, x2, x3 of 3k�1 bits each, and MAJ(1)(x) = MAJ(x).

Prove that R(MAJ(k)) = O((8/3)k). Optional: Improve this bound.

5. (?) Prove Theorem 13.10 by giving an O(n)-query algorithm to determine whether an input
graph is a scorpion graph.

1

Part III Michaelmas 2012

COMPUTATIONAL COMPLEXITY

EXERCISE SHEET 11: Communication complexity and interactive proofs

Ashley Montanaro, DAMTP Cambridge

am994@cam.ac.uk

Starred questions are likely to be more challenging/interesting.

1. Let GT : {1, . . . , 2n}⇥ {1, . . . , 2n} ! {0, 1} be the greater than function: GT(x, y) = 1 if and

only if x < y. Show that Dcc(GT) = n but Rcc(GT) = O(log

2 n).

2. Let DISJ : {0, 1}n ⇥ {0, 1}n ! {0, 1} be the set disjointness function, DISJ(x, y) = 0 if and

only if there exists i such that xi = yi = 1. Prove that Dcc(DISJ) = n.

3. Prove that any multiple-tape Turing machine which decides the language of palindromes must

use space ⌦(log n).

4. (?) Let f : {0, 1}n ⇥ {0, 1}n ! {0, 1} be picked uniformly at random. Show that for n � 4,

with probability > 0.999, Dcc(f) = n.

5. Prove that any language with a multiple-prover interactive proof can be decided by an NDTM

running in exponential time (MIP ✓ NEXP).

6. (?) Let p be prime. An integer y is said to be a quadratic residue modulo p if there exists x
such that y ⌘ x2 (mod p). Prove (directly) that the following language is in IP.

QNR = {(y, p) : y is not a quadratic residue modulo p}.

1

Part III Michaelmas 2012

COMPUTATIONAL COMPLEXITY

EXERCISE SHEET 12: Hardness of approximation and PCP

Ashley Montanaro, DAMTP Cambridge

am994@cam.ac.uk

1. Let MAX-2SAT be the following problem. Given a CNF formula � with at most 2 variables
per clause, output the largest number of clauses in � which can be satisfied by any assignment
x.

(a) (Optional.) Show that MAX-2SAT is NP-hard.

(b) Give a polynomial-time algorithm which approximates MAX-2SAT to within a factor of
3/4.

2. The following strengthening of the PCP Theorem is known to hold: for any ✏ > 0, NP ✓
PCP1,1/2+✏(O(log n), 3). That is, any language in NP has a probabilistically checkable proof
with perfect completeness where the verifier reads only 3 bits of the proof! Show that the 3
cannot be replaced with a 2 unless P = NP.

3. Consider the following “�-biased” linearity test in the ±1 picture. Given access to a function
f : {0, 1}n ! {±1}, pick x, y 2 {0, 1}n uniformly at random. Also pick z 2 {0, 1}n at
random, but with the biased probability distribution Pr[zi = 1] = �, Pr[zi = 0] = 1 � �, for
some 0  �  1. Compute f(x), f(y) and f(x�y�z), and accept if f(x)f(y)f(x�y�z) = 1;
otherwise reject. For � = 0, this is just the standard linearity test.

(a) Show that the probability that the �-biased linearity test accepts is

1

2
+

1

2

X

S✓[n]

(1� 2�)|S|f̂(S)3.

(b) Let f : {0, 1}n ! {±1} be a function that depends on at most one of its n input variables.
Show that if f is constant, then f̂(S) = ±1 for S = ; and f̂(S) = 0 for all other S ✓ [n];
and if f depends on exactly one of its input variables, then f̂(S) = ±1 for some S ✓ [n]
such that |S| = 1, and f̂(S) = 0 for all other S ✓ [n].

(c) Show that the �-biased linearity test can be used to give a test which, for any ✏, uses
O(1/✏2) queries to f and distinguishes, with constant success probability, between two
cases: f depends on at most one of its input variables, or f is ✏-far from depending on
at most one of its input variables.

1

