Finding the shortest path

Ashley Montanaro
ashley@cs.bris.ac.uk

Department of Computer Science, University of Bristol
Bristol, UK

28 October 2013
Given a (weighted, directed) graph G and a pair of vertices s and t, we would like to find a shortest path from s to t.
Given a (weighted, directed) graph G and a pair of vertices s and t, we would like to find a shortest path from s to t.

A fundamental task with many applications:
Other applications

- Internet routing (e.g. the OSPF routing algorithm)
- VLSI routing
- Traffic information systems
- Robot motion planning
- Routing telephone calls
- Avoiding nuclear contamination
- Destabilising currency markets
- ...

Shortest paths problem

Formally, a shortest path from s to t in a graph G is a sequence v_1, v_2, \ldots, v_m such that the total weight of the edges $s \rightarrow v_1, v_1 \rightarrow v_2, \ldots, v_m \rightarrow t$ is minimal.
Formally, a shortest path from s to t in a graph G is a sequence v_1, v_2, \ldots, v_m such that the total weight of the edges $s \rightarrow v_1, v_1 \rightarrow v_2, \ldots, v_m \rightarrow t$ is minimal.
Shortest paths problem

Formally, a shortest path from s to t in a graph G is a sequence v_1, v_2, \ldots, v_m such that the total weight of the edges $s \rightarrow v_1, v_1 \rightarrow v_2, \ldots, v_m \rightarrow t$ is minimal.
In fact, the algorithms we will discuss for this problem give us more: given a source \(s \), they output a shortest path from \(s \) to every other vertex.

This is known as the single-source shortest path problem (SSSP).
Single-source shortest paths

- In fact, the algorithms we will discuss for this problem give us more: given a source s, they output a shortest path from s to every other vertex.
- This is known as the single-source shortest path problem (SSSP).
Single-source shortest paths

- In fact, the algorithms we will discuss for this problem give us more: given a source s, they output a shortest path from s to every other vertex.

- This is known as the single-source shortest path problem (SSSP).
Single-source shortest paths

- In fact, the algorithms we will discuss for this problem give us more: given a source s, they output a shortest path from s to every other vertex.
- This is known as the single-source shortest path problem (SSSP).
Negative-weight edges

- If some of the edges have negative weights, the idea of a shortest path might not make sense.

- If there is a cycle in G which is reachable on a path from s to t, and the sum of the weights of the edges in the cycle is negative, then we can get from s to t with a path of arbitrarily low weight by repeatedly going round the cycle.
Negative-weight edges

- If some of the edges have negative weights, the idea of a shortest path might not make sense.

- If there is a cycle in G which is reachable on a path from s to t, and the sum of the weights of the edges in the cycle is negative, then we can get from s to t with a path of arbitrarily low weight by repeatedly going round the cycle.

![Graph](image-url)
Negative-weight edges

- If some of the edges have **negative weights**, the idea of a shortest path might not make sense.

- If there is a cycle in G which is reachable on a path from s to t, and the sum of the weights of the edges in the cycle is negative, then we can get from s to t with a path of arbitrarily low weight by repeatedly going round the cycle.
Today’s lecture

▶ Today we will discuss an algorithm for the single-source shortest paths problem called the Bellman-Ford algorithm.
Today’s lecture

- Today we will discuss an algorithm for the single-source shortest paths problem called the Bellman-Ford algorithm.

- The algorithm can be used for graphs with negative weights and can detect negative-weight cycles.
Today’s lecture

- Today we will discuss an algorithm for the single-source shortest paths problem called the **Bellman-Ford** algorithm.

- The algorithm can be used for graphs with negative weights and can detect negative-weight cycles.

- It also has applications to solving systems of **difference constraints** and detecting **arbitrage**.
Today’s lecture

- Today we will discuss an algorithm for the single-source shortest paths problem called the Bellman-Ford algorithm.

- The algorithm can be used for graphs with negative weights and can detect negative-weight cycles.

- It also has applications to solving systems of difference constraints and detecting arbitrage.

Remark: One algorithmic idea to solve the SSSP that doesn’t work is to try every possible path from s to t in turn.
Today’s lecture

- Today we will discuss an algorithm for the single-source shortest paths problem called the **Bellman-Ford** algorithm.

- The algorithm can be used for graphs with negative weights and can detect negative-weight cycles.

- It also has applications to solving systems of **difference constraints** and detecting **arbitrage**.

Remark: One algorithmic idea to solve the SSSP that **doesn’t** work is to try every possible path from \(s \) to \(t \) in turn.

- There can be exponentially many paths so such an algorithm cannot be efficient.
Notation

We will use the following notation (essentially the same as CLRS):

- We always let G denote the graph in which we want to find a shortest path. We use V for the number of vertices in G, and E for the number of edges.
- s always denotes the source.
- We write $u \rightarrow v$ for an edge from u to v, and $w(u,v)$ for the weight of this edge.
- We write $\delta(u,v)$ for the distance from u to v, i.e. the length (total weight) of a shortest path from u to v.
- We write $\delta(u,v) = \infty$ when there is no path from u to v.

(Mathematical note: in practice, ∞ would be represented by a number so large it could never occur in distance calculations...)

- For each vertex v, we will maintain a guess for its distance from s; call this $v.d$.
Notation

We will use the following notation (essentially the same as CLRS):

- We always let G denote the graph in which we want to find a shortest path. We use V for the number of vertices in G, and E for the number of edges. s always denotes the source.

- We write $u \rightarrow v$ for an edge from u to v, and $w(u,v)$ for the weight of this edge.

- We write $\delta(u,v)$ for the distance from u to v, i.e. the length (total weight) of a shortest path from u to v.

- We write $\delta(u,v) = \infty$ when there is no path from u to v.

(Mathematical note: in practice, ∞ would be represented by a number so large it could never occur in distance calculations...)

- For each vertex v, we will maintain a guess for its distance from s; call this $d(v)$.
Notation

We will use the following notation (essentially the same as CLRS):

- We always let G denote the graph in which we want to find a shortest path. We use V for the number of vertices in G, and E for the number of edges. s always denotes the source.

- We write $u \rightarrow v$ for an edge from u to v, and $w(u, v)$ for the weight of this edge.

- We write $\delta(u, v)$ for the distance from u to v, i.e. the length (total weight) of a shortest path from u to v.

- We write $\delta(u, v) = \infty$ when there is no path from u to v.

(Mathematical note: in practice, ∞ would be represented by a number so large it could never occur in distance calculations...)
We will use the following notation (essentially the same as CLRS):

- We always let G denote the graph in which we want to find a shortest path. We use V for the number of vertices in G, and E for the number of edges. s always denotes the source.

- We write $u \rightarrow v$ for an edge from u to v, and $w(u, v)$ for the weight of this edge.

- We write $\delta(u, v)$ for the distance from u to v, i.e. the length (total weight) of a shortest path from u to v.

- We write $\delta(u, v) = \infty$ when there is no path from u to v. (Mathematical note: in practice, ∞ would be represented by a number so large it could never occur in distance calculations...)
Notation

We will use the following notation (essentially the same as CLRS):

- We always let G denote the graph in which we want to find a shortest path. We use V for the number of vertices in G, and E for the number of edges. s always denotes the source.

- We write $u \rightarrow v$ for an edge from u to v, and $w(u, v)$ for the weight of this edge.

- We write $\delta(u, v)$ for the distance from u to v, i.e. the length (total weight) of a shortest path from u to v.

- We write $\delta(u, v) = \infty$ when there is no path from u to v. (Mathematical note: in practice, ∞ would be represented by a number so large it could never occur in distance calculations...)}
Notation

We will use the following notation (essentially the same as CLRS):

▶ We always let G denote the graph in which we want to find a shortest path. We use V for the number of vertices in G, and E for the number of edges. s always denotes the source.

▶ We write $u \rightarrow v$ for an edge from u to v, and $w(u, v)$ for the weight of this edge.

▶ We write $\delta(u, v)$ for the distance from u to v, i.e. the length (total weight) of a shortest path from u to v.

▶ We write $\delta(u, v) = \infty$ when there is no path from u to v. (Mathematical note: in practice, ∞ would be represented by a number so large it could never occur in distance calculations...)

▶ For each vertex v, we will maintain a guess for its distance from s; call this $v.d$.
Predecessors and shortest paths

- For each vertex \(v \), we try to determine its predecessor \(v.\pi \), which is the previous vertex in some shortest path from \(s \) to \(v \).

- Knowledge of \(v \)'s predecessor suffices to compute the whole path from \(s \) to \(v \), by following the predecessors back to \(s \) and reversing the path.
Predecessors and shortest paths

- For each vertex v, we try to determine its predecessor $v.\pi$, which is the previous vertex in some shortest path from s to v.

- Knowledge of v’s predecessor suffices to compute the whole path from s to v, by following the predecessors back to s and reversing the path.
Predecessors and shortest paths

- For each vertex v, we try to determine its predecessor $v.\pi$, which is the previous vertex in some shortest path from s to v.

- Knowledge of v’s predecessor suffices to compute the whole path from s to v, by following the predecessors back to s and reversing the path.
Predecessors and shortest paths

▶ For each vertex v, we try to determine its predecessor $v.\pi$, which is the previous vertex in some shortest path from s to v.

▶ Knowledge of v’s predecessor suffices to compute the whole path from s to v, by following the predecessors back to s and reversing the path.
A general framework

The basic idea behind both shortest-path algorithms we will discuss is:

1. Initialise a guess $v.d$ for the distance from the source s:
 - $s.d = 0$,
 - $v.d = \infty$ for all other vertices v.

2. Update our guesses by relaxing edges:
 - If there is an edge $u \rightarrow v$ and our guess for the distance from s to v is greater than our guess for the distance from s to u, plus $w(u, v)$,
 then we can improve our guess by using this edge.

   ```latex
   \text{Relax}(u, v)\\
   \begin{align*}
   &\text{1. if } v.d > u.d + w(u, v) \\
   &\text{2. } v.d \leftarrow u.d + w(u, v) \\
   &\text{3. } v.\pi = u
   \end{align*}
   ```

Note that $\infty + x = \infty$ for any real number x.
A general framework

The basic idea behind both shortest-path algorithms we will discuss is:

1. Initialise a guess $v.d$ for the distance from the source s: $s.d = 0$, and $v.d = \infty$ for all other vertices v.

$\text{Relax}(u, v)$

1. if $v.d > u.d + w(u, v)$
2. $v.d \leftarrow u.d + w(u, v)$
3. $v.\pi = u$
A general framework

The basic idea behind both shortest-path algorithms we will discuss is:

1. Initialise a guess $v.d$ for the distance from the source s: $s.d = 0$, and $v.d = \infty$ for all other vertices v.

2. Update our guesses by relaxing edges:

 - If there is an edge $u \rightarrow v$ and our guess for the distance from s to v is greater than our guess for the distance from s to u, plus $w(u, v)$, then we can improve our guess by using this edge.

Relax(u, v)

1. if $v.d > u.d + w(u, v)$
2. $v.d \leftarrow u.d + w(u, v)$
3. $v.\pi = u$
A general framework

The basic idea behind both shortest-path algorithms we will discuss is:

1. Initialise a guess $v.d$ for the distance from the source s: $s.d = 0$, and $v.d = \infty$ for all other vertices v.

2. Update our guesses by relaxing edges:

 - If there is an edge $u \rightarrow v$ and our guess for the distance from s to v is greater than our guess for the distance from s to u, plus $w(u, v)$, then we can improve our guess by using this edge.

\[
\text{Relax}(u, v) \quad \\
1. \text{if } v.d > u.d + w(u, v) \\
2. \quad v.d \leftarrow u.d + w(u, v) \\
3. \quad v.\pi = u
\]

Note that $\infty + x = \infty$ for any real number x.
The Bellman-Ford algorithm

This algorithm simply consists of repeatedly relaxing every edge in G.

BellmanFord(G, s)

1. for each vertex $v \in G$: $v.d \leftarrow \infty$, $v.\pi \leftarrow \text{nil}$
2. $s.d \leftarrow 0$

▶ Time complexity: $\Theta(V) + \Theta(VE) + \Theta(E) = \Theta(VE)$.

Ashley Montanaro
ashley@cs.bris.ac.uk
COMS21103: Finding the shortest path
The Bellman-Ford algorithm

This algorithm simply consists of repeatedly relaxing every edge in G.

BellmanFord(G, s)

1. for each vertex $v \in G$: $v.d \leftarrow \infty$, $v.\pi \leftarrow \text{nil}$
2. $s.d \leftarrow 0$
3. for $i = 1$ to $V - 1$
4. for each edge $u \rightarrow v$ in G
5. Relax(u, v)
The Bellman-Ford algorithm

This algorithm simply consists of repeatedly relaxing every edge in G.

BellmanFord(G, s)

1. for each vertex $v \in G$: $v.d \leftarrow \infty$, $v.\pi \leftarrow \text{nil}$
2. $s.d \leftarrow 0$
3. for $i = 1$ to $V - 1$
4. for each edge $u \rightarrow v$ in G
5. Relax(u, v)
6. for each edge $u \rightarrow v$ in G
7. if $v.d > u.d + w(u, v)$
8. error(“Negative-weight cycle detected”)
The Bellman-Ford algorithm

This algorithm simply consists of repeatedly relaxing every edge in G.

BellmanFord(G, s)

1. for each vertex $v \in G$: $v.d \leftarrow \infty$, $v.\pi \leftarrow$ nil
2. $s.d \leftarrow 0$
3. for $i = 1$ to $V - 1$
4. for each edge $u \rightarrow v$ in G
5. Relax(u, v)
6. for each edge $u \rightarrow v$ in G
7. if $v.d > u.d + w(u, v)$
8. error(“Negative-weight cycle detected”)

- Time complexity: $\Theta(V) + \Theta(VE) + \Theta(E) = \Theta(VE)$.
Example 1: no negative-weight cycles

Imagine we want to find shortest paths from vertex A in the following graph:
Example 1: no negative-weight cycles

At the start of the algorithm:

In the above diagram, the red text is the distance from the source A, (i.e. $v.d$), and the green text is the predecessor vertex (i.e. $v.\pi$).
Example 1: no negative-weight cycles

The first iteration of the for loop:

Note that the edges are picked in arbitrary order.
Example 1: no negative-weight cycles

The second iteration of the for loop:

Note that the edges are picked in arbitrary order.
Example 1: no negative-weight cycles

The 4 iterations of the for loop that follow do not update any distance or predecessor values, so the final state is:

So the shortest path from A to G (for example) has weight 1.

To output a shortest path itself, we can trace back the predecessor values from G.
Example 1: no negative-weight cycles

The 4 iterations of the for loop that follow do not update any distance or predecessor values, so the final state is:

So the shortest path from A to G (for example) has weight 1.

To output a shortest path itself, we can trace back the predecessor values from G.
Example 2: negative-weight cycle

We now consider an input graph that has a negative-weight cycle.
Example 2: negative-weight cycle

At the start of the algorithm:

At the start of the algorithm:
Example 2: negative-weight cycle

The first iteration of the for loop:

As before, the order in which we consider the edges is arbitrary (here we use the order A → B, C → A, B → C).
Example 2: negative-weight cycle

The second iteration of the for loop:

At the end of the algorithm, $B.d > A.d + w(A, B)$.

So the algorithm terminates with "Negative-weight cycle detected."
Example 2: negative-weight cycle

The second iteration of the for loop:

At the end of the algorithm, $B.d > A.d + w(A, B)$.

So the algorithm terminates with “Negative-weight cycle detected”.

- At the end of the algorithm, $B.d > A.d + w(A, B)$.
- So the algorithm terminates with “Negative-weight cycle detected”.
Claim (cycles)

If G does not contain any negative-weight cycles reachable from s, a shortest path from s to t cannot contain a cycle.
Proof of correctness: Preliminaries

Claim (cycles)
If G does not contain any negative-weight cycles reachable from s, a shortest path from s to t cannot contain a cycle.

Proof
If a path p contains a cycle $v_0 \rightarrow v_1 \rightarrow \cdots \rightarrow v_0$ such that the sum of the weights of the edges is non-negative, deleting this cycle from p cannot increase p’s total weight.
Proof of correctness: Preliminaries

Claim (cycles)

If G does not contain any negative-weight cycles reachable from s, a shortest path from s to t cannot contain a cycle.

Proof

If a path p contains a cycle $v_0 \rightarrow v_1 \rightarrow \cdots \rightarrow v_0$ such that the sum of the weights of the edges is non-negative, deleting this cycle from p cannot increase p's total weight.
Proof of correctness: Preliminaries

Claim (triangle inequality)

For any vertices a, b, c, $\delta(a, c) \leq \delta(a, b) + \delta(b, c)$.

Proof

Given a shortest path from a to b and a shortest path from b to c, combining these two paths gives a path from a to c with total weight $\delta(a, b) + \delta(b, c)$. Note that this holds even if some edge weights are negative.
Proof of correctness: Preliminaries

Claim (triangle inequality)

For any vertices \(a, b, c \), \(\delta(a, c) \leq \delta(a, b) + \delta(b, c) \).

Proof

Given a shortest path from \(a \) to \(b \) and a shortest path from \(b \) to \(c \), combining these two paths gives a path from \(a \) to \(c \) with total weight \(\delta(a, b) + \delta(b, c) \).

Note that this holds even if some edge weights are negative.
Proof of correctness: Preliminaries

Claim (triangle inequality)

For any vertices a, b, c, $\delta(a, c) \leq \delta(a, b) + \delta(b, c)$.

Proof

Given a shortest path from a to b and a shortest path from b to c, combining these two paths gives a path from a to c with total weight $\delta(a, b) + \delta(b, c)$.

Note that this holds even if some edge weights are negative.
Proof of correctness: Preliminaries

Claim (triangle inequality)

For any vertices \(a, b, c \), \(\delta(a, c) \leq \delta(a, b) + \delta(b, c) \).

Proof

Given a shortest path from \(a \) to \(b \) and a shortest path from \(b \) to \(c \), combining these two paths gives a path from \(a \) to \(c \) with total weight \(\delta(a, b) + \delta(b, c) \).

Note that this holds even if some edge weights are negative.

![Graph](image-url)
Claim (triangle inequality)
For any vertices a, b, c, $\delta(a, c) \leq \delta(a, b) + \delta(b, c)$.

Proof
Given a shortest path from a to b and a shortest path from b to c, combining these two paths gives a path from a to c with total weight $\delta(a, b) + \delta(b, c)$.

Note that this holds even if some edge weights are negative.
Proof of correctness: Preliminaries

Claim (triangle inequality)

For any vertices \(a, b, c \), \(\delta(a, c) \leq \delta(a, b) + \delta(b, c) \).

Proof

Given a shortest path from \(a \) to \(b \) and a shortest path from \(b \) to \(c \), combining these two paths gives a path from \(a \) to \(c \) with total weight \(\delta(a, b) + \delta(b, c) \).

Note that this holds even if some edge weights are negative.
Claim (triangle inequality)

For any vertices a, b, c, $\delta(a, c) \leq \delta(a, b) + \delta(b, c)$.

Proof

Given a shortest path from a to b and a shortest path from b to c, combining these two paths gives a path from a to c with total weight $\delta(a, b) + \delta(b, c)$.

Note that this holds even if some edge weights are negative.
Finally, an important property of relaxation, which can be proven by induction and using the triangle inequality, is called **path-relaxation**:

Claim (path-relaxation)

Assume that:

- \(p = s \rightarrow v_1 \rightarrow \cdots \rightarrow v_k \rightarrow v \) is a shortest path from \(s \) to \(v \);
Proof of correctness: Preliminaries

Finally, an important property of relaxation, which can be proven by induction and using the triangle inequality, is called path-relaxation:

Claim (path-relaxation)

Assume that:

- $p = s \rightarrow v_1 \rightarrow \cdots \rightarrow v_k \rightarrow v$ is a shortest path from s to v;
- $s.d$ is initially set to 0 and $u.d$ is initially set to ∞ for all $u \neq s$;

Proof: exercise.
Proof of correctness: Preliminaries

Finally, an important property of relaxation, which can be proven by induction and using the triangle inequality, is called path-relaxation:

Claim (path-relaxation)

Assume that:

- \(p = s \rightarrow v_1 \rightarrow \cdots \rightarrow v_k \rightarrow v \) is a shortest path from \(s \) to \(v \);
- \(s.d \) is initially set to 0 and \(u.d \) is initially set to \(\infty \) for all \(u \neq s \);
- the edges in \(p \) are relaxed in the order they appear in \(p \) (possibly with other edges relaxed in between).

Proof: exercise.
Finally, an important property of relaxation, which can be proven by induction and using the triangle inequality, is called **path-relaxation**:

Claim (path-relaxation)

Assume that:
- \(p = s \to v_1 \to \cdots \to v_k \to v \) is a shortest path from \(s \) to \(v \);
- \(s.d \) is initially set to 0 and \(u.d \) is initially set to \(\infty \) for all \(u \neq s \);
- the edges in \(p \) are relaxed in the order they appear in \(p \) (possibly with other edges relaxed in between).

Then, at the end of this process, \(v.d = \delta(s, v) \).
Proof of correctness: Preliminaries

Finally, an important property of relaxation, which can be proven by induction and using the triangle inequality, is called **path-relaxation**:

Claim (path-relaxation)

Assume that:
- $p = s \rightarrow v_1 \rightarrow \cdots \rightarrow v_k \rightarrow v$ is a shortest path from s to v;
- $s.d$ is initially set to 0 and $u.d$ is initially set to ∞ for all $u \neq s$;
- the edges in p are relaxed in the order they appear in p (possibly with other edges relaxed in between).

Then, at the end of this process, $v.d = \delta(s, v)$.

Proof: exercise.
Proof of correctness

Claim

If G does not contain a negative-weight cycle reachable from s, then at the completion of BellmanFord, $v.d = \delta(s, v)$ for all vertices v.

Proof ▶

Write $v_0 = s$, $v_m = v$. If v is reachable from s, there must exist a shortest path $v_0 \rightarrow v_1 \rightarrow \cdots \rightarrow v_m$.

▶ A shortest path cannot contain a cycle, so $m \leq V - 1$.

▶ In the i'th iteration of the for loop, the edge $v_{i-1} \rightarrow v_i$ is relaxed (among others).

▶ By the path-relaxation property, after $V - 1$ iterations, $v.d = \delta(s, v)$.

▶ So $V - 1$ iterations suffice to set $v.d$ correctly for all v.

□
Proof of correctness

Claim

If G does not contain a negative-weight cycle reachable from s, then at the completion of BellmanFord, $v.d = \delta(s, v)$ for all vertices v.

Proof

- Write $v_0 = s$, $v_m = v$. If v is reachable from s, there must exist a shortest path $v_0 \to v_1 \to \cdots \to v_m$.

\square
Proof of correctness

Claim

If \(G \) does not contain a negative-weight cycle reachable from \(s \), then at the completion of BellmanFord, \(v.d = \delta(s, v) \) for all vertices \(v \).

Proof

- Write \(v_0 = s \), \(v_m = v \). If \(v \) is reachable from \(s \), there must exist a shortest path \(v_0 \rightarrow v_1 \rightarrow \cdots \rightarrow v_m \).
- A shortest path cannot contain a cycle, so \(m \leq V - 1 \).
Proof of correctness

Claim

If G does not contain a negative-weight cycle reachable from s, then at the completion of BellmanFord, $v.d = \delta(s, v)$ for all vertices v.

Proof

- Write $v_0 = s$, $v_m = v$. If v is reachable from s, there must exist a shortest path $v_0 \rightarrow v_1 \rightarrow \cdots \rightarrow v_m$.
- A shortest path cannot contain a cycle, so $m \leq V - 1$.
- In the i’th iteration of the for loop, the edge $v_{i-1} \rightarrow v_i$ is relaxed (among others).
Proof of correctness

Claim

If G does not contain a negative-weight cycle reachable from s, then at the completion of BellmanFord, $v.d = \delta(s, v)$ for all vertices v.

Proof

- Write $v_0 = s$, $v_m = v$. If v is reachable from s, there must exist a shortest path $v_0 \rightarrow v_1 \rightarrow \cdots \rightarrow v_m$.
- A shortest path cannot contain a cycle, so $m \leq V - 1$.
- In the i'th iteration of the for loop, the edge $v_{i-1} \rightarrow v_i$ is relaxed (among others).
- By the path-relaxation property, after $V - 1$ iterations, $v.d = \delta(s, v)$.
Proof of correctness

Claim

If G does not contain a negative-weight cycle reachable from s, then at the completion of BellmanFord, $v.d = \delta(s, v)$ for all vertices v.

Proof

- Write $v_0 = s$, $v_m = v$. If v is reachable from s, there must exist a shortest path $v_0 \rightarrow v_1 \rightarrow \cdots \rightarrow v_m$.
- A shortest path cannot contain a cycle, so $m \leq V - 1$.
- In the i'th iteration of the for loop, the edge $v_{i-1} \rightarrow v_i$ is relaxed (among others).
- By the path-relaxation property, after $V - 1$ iterations, $v.d = \delta(s, v)$.
- So $V - 1$ iterations suffice to set $v.d$ correctly for all v.

\square
Proof of correctness

Claim

If G does not contain a negative-weight cycle reachable from s, then BellmanFord does not exit with an error.
Proof of correctness

Claim

If G does not contain a negative-weight cycle reachable from s, then BellmanFord does not exit with an error.

Proof

- By the triangle inequality, for all edges $u \rightarrow v$,
 $\delta(s, v) \leq \delta(s, u) + w(u, v)$.

\blacksquare
Proof of correctness

Claim

If G does not contain a negative-weight cycle reachable from s, then BellmanFord does not exit with an error.

Proof

- By the triangle inequality, for all edges $u \rightarrow v$, $\delta(s, v) \leq \delta(s, u) + w(u, v)$.
- By the claim on the previous slide, $v.d = \delta(s, v)$ for all vertices v.
Proof of correctness

Claim

If G does not contain a negative-weight cycle reachable from s, then BellmanFord does not exit with an error.

Proof

- By the triangle inequality, for all edges $u \rightarrow v$, $\delta(s, v) \leq \delta(s, u) + w(u, v)$.
- By the claim on the previous slide, $v.d = \delta(s, v)$ for all vertices v.
- So, for all edges $u \rightarrow v$, $v.d \leq u.d + w(u, v)$.
Proof of correctness

Claim

If G does not contain a negative-weight cycle reachable from s, then BellmanFord does not exit with an error.

Proof

- By the triangle inequality, for all edges $u \rightarrow v$,
 \[\delta(s, v) \leq \delta(s, u) + w(u, v). \]
- By the claim on the previous slide, $v.d = \delta(s, v)$ for all vertices v.
- So, for all edges $u \rightarrow v$, $v.d \leq u.d + w(u, v)$.
- So the check in step (7) of the algorithm never fails.
Proof of correctness

Claim

If G contains a negative-weight cycle reachable from s, then BellmanFord exits with an error.
Proof of correctness

Claim

If G contains a negative-weight cycle reachable from s, then BellmanFord exits with an error.

Proof

- We will assume that G contains a negative-weight cycle reachable from s, and that BellmanFord does not exit with an error, and prove that this implies a contradiction.
Proof of correctness

Claim

If G contains a negative-weight cycle reachable from s, then BellmanFord exits with an error.

Proof

- We will assume that G contains a negative-weight cycle reachable from s, and that BellmanFord does not exit with an error, and prove that this implies a contradiction.
- Let v_0, \ldots, v_k be a negative-weight cycle, where $v_k = v_0$.
Proof of correctness

Claim

If G contains a negative-weight cycle reachable from s, then BellmanFord exits with an error.

Proof

- We will assume that G contains a negative-weight cycle reachable from s, and that BellmanFord does not exit with an error, and prove that this implies a contradiction.
- Let v_0, \ldots, v_k be a negative-weight cycle, where $v_k = v_0$.
- Then by definition $\sum_{i=1}^{k} w(v_{i-1}, v_i) < 0$.

Ashley Montanaro
ashley@cs.bris.ac.uk
COMS21103: Finding the shortest path
Proof of correctness

Claim
If G contains a negative-weight cycle reachable from s, then BellmanFord exits with an error.

Proof

- We will assume that G contains a negative-weight cycle reachable from s, and that BellmanFord does not exit with an error, and prove that this implies a contradiction.
- Let v_0, \ldots, v_k be a negative-weight cycle, where $v_k = v_0$.
- Then by definition $\sum_{i=1}^{k} w(v_{i-1}, v_i) < 0$.
- As BellmanFord does not exit with an error, for all $1 \leq i \leq k$,
 \[v_i.d \leq v_{i-1}.d + w(v_{i-1}, v_i). \]
Proof of correctness

Claim

If G contains a negative-weight cycle reachable from s, then BellmanFord exits with an error.

Proof

> Summing this inequality over i between 1 and k,

$$
\sum_{i=1}^{k} v_i \cdot d \leq \sum_{i=1}^{k} v_{i-1} \cdot d + w(v_{i-1}, v_i) = \sum_{i=1}^{k} v_{i-1} \cdot d + \sum_{i=1}^{k} w(v_{i-1}, v_i)
$$

$$
< \sum_{i=1}^{k} v_{i-1} \cdot d = \sum_{i=0}^{k-1} v_i \cdot d.
$$
Proof of correctness

Claim

If G contains a negative-weight cycle reachable from s, then BellmanFord exits with an error.

Proof

- Summing this inequality over i between 1 and k,

$$
\sum_{i=1}^{k} v_i.d \leq \sum_{i=1}^{k} v_{i-1}.d + w(v_{i-1}, v_i) = \sum_{i=1}^{k} v_{i-1}.d + \sum_{i=1}^{k} w(v_{i-1}, v_i)
$$

$$
< \sum_{i=1}^{k} v_{i-1}.d = \sum_{i=0}^{k-1} v_i.d.
$$

- Subtracting $\sum_{i=1}^{k-1} v_i.d$ from both sides, we get $v_k.d < v_0.d$.

Proof of correctness

Claim

If G contains a negative-weight cycle reachable from s, then BellmanFord exits with an error.

Proof

- Summing this inequality over i between 1 and k,

$$
\sum_{i=1}^{k} v_i \cdot d \leq \sum_{i=1}^{k} v_{i-1} \cdot d + w(v_{i-1}, v_i) = \sum_{i=1}^{k} v_{i-1} \cdot d + \sum_{i=1}^{k} w(v_{i-1}, v_i)
$$

$$
< \sum_{i=1}^{k} v_{i-1} \cdot d = \sum_{i=0}^{k-1} v_i \cdot d.
$$

- Subtracting $\sum_{i=1}^{k-1} v_i \cdot d$ from both sides, we get $v_k \cdot d < v_0 \cdot d$.

- But $v_0 = v_k$, so we have a contradiction.
Application 1: difference constraints

- A system of **difference constraints** is a set of inequalities of the form $x_i - x_j \leq b_{ij}$, where x_i and x_j are variables and b_{ij} is a real number.
Application 1: difference constraints

- A system of difference constraints is a set of inequalities of the form $x_i - x_j \leq b_{ij}$, where x_i and x_j are variables and b_{ij} is a real number.

- For example:

\[
x_1 - x_2 \leq 5, \quad x_2 - x_3 \leq -2, \quad x_1 - x_4 \leq 0.
\]
Application 1: difference constraints

- A system of difference constraints is a set of inequalities of the form \(x_i - x_j \leq b_{ij} \), where \(x_i \) and \(x_j \) are variables and \(b_{ij} \) is a real number.

- For example:

\[
x_1 - x_2 \leq 5, \quad x_2 - x_3 \leq -2, \quad x_1 - x_4 \leq 0.
\]

- Given a system of \(m \) difference constraints in \(n \) variables, we would like to find an assignment of real numbers to the variables such that the constraints are all satisfied, if such an assignment exists.
Application 1: difference constraints

▶ A system of difference constraints is a set of inequalities of the form $x_i - x_j \leq b_{ij}$, where x_i and x_j are variables and b_{ij} is a real number.

▶ For example:

$$x_1 - x_2 \leq 5, \quad x_2 - x_3 \leq -2, \quad x_1 - x_4 \leq 0.$$

▶ Given a system of m difference constraints in n variables, we would like to find an assignment of real numbers to the variables such that the constraints are all satisfied, if such an assignment exists.

▶ For example, the above system is satisfied by $x_1 = 0$, $x_2 = -1$, $x_3 = 1$, $x_4 = 7$ (among other solutions).
Application 1: difference constraints

- A system of difference constraints is a set of inequalities of the form $x_i - x_j \leq b_{ij}$, where x_i and x_j are variables and b_{ij} is a real number.

- For example:

$$x_1 - x_2 \leq 5, \quad x_2 - x_3 \leq -2, \quad x_1 - x_4 \leq 0.$$

- Given a system of m difference constraints in n variables, we would like to find an assignment of real numbers to the variables such that the constraints are all satisfied, if such an assignment exists.

- For example, the above system is satisfied by $x_1 = 0$, $x_2 = -1$, $x_3 = 1$, $x_4 = 7$ (among other solutions).

- We will show that this problem can be solved using Bellman-Ford in time $O(nm + n^2)$.
Graph representation of difference constraints

Given \(m \) difference constraints in \(n \) variables, we create a graph on \(n + 1 \) vertices \(v_0, \ldots, v_n \) with \(m + n \) edges where:

- for each constraint \(x_i - x_j \leq b_{ij} \), we add an edge \(v_j \rightarrow v_i \) with weight \(b_{ij} \)
Graph representation of difference constraints

Given \(m \) difference constraints in \(n \) variables, we create a graph on \(n + 1 \) vertices \(v_0, \ldots, v_n \) with \(m + n \) edges where:

- for each constraint \(x_i - x_j \leq b_{ij} \), we add an edge \(v_j \to v_i \) with weight \(b_{ij} \)
- for all \(1 \leq i \leq n \) there is an additional edge \(v_0 \to v_i \) with weight 0.

For example:

\[
x_1 - x_2 \leq 5, \quad x_2 - x_3 \leq -2, \quad x_1 - x_4 \leq 0
\]

corresponds to
Claim

Let G be the graph corresponding to a system of difference constraints. If G does not contain a negative-weight cycle, the assignment $x_i = \delta(v_0, v_i)$, for all $1 \leq i \leq n$, is a valid solution to the system of constraints.
Claim

Let G be the graph corresponding to a system of difference constraints. If G does not contain a negative-weight cycle, the assignment $x_i = \delta(v_0, v_i)$, for all $1 \leq i \leq n$, is a valid solution to the system of constraints.

Proof

- We need to prove that

$$\delta(v_0, v_i) - \delta(v_0, v_j) \leq b_{ij}$$

for all i, j in the list of constraints.
Claim

Let G be the graph corresponding to a system of difference constraints. If G does not contain a negative-weight cycle, the assignment $x_i = \delta(v_0, v_i)$, for all $1 \leq i \leq n$, is a valid solution to the system of constraints.

Proof

- We need to prove that

 $$\delta(v_0, v_i) - \delta(v_0, v_j) \leq b_{ij}$$

 for all i, j in the list of constraints.

- This follows from the triangle inequality

 $$\delta(v_0, v_i) \leq \delta(v_0, v_j) + \delta(v_j, v_i) \leq \delta(v_0, v_j) + w(v_j, v_i) = \delta(v_0, v_j) + b_{ij}$$

 and rearranging. □
Claim

Let G be the graph corresponding to a system of difference constraints. If G contains a negative-weight cycle, there is no valid solution to the system of constraints.

Proof (sketch)

We prove the converse: if the system has a valid solution, there is no negative-weight cycle.

Let $c = v_1, \ldots, v_k, v_1$ be an arbitrary cycle on vertices v_1, \ldots, v_k (without loss of generality). This corresponds to the inequalities

\[x_2 - x_1 \leq b_{12}, \quad x_3 - x_2 \leq b_{23}, \ldots, \quad x_1 - x_k \leq b_{k1}. \]

If there is a valid solution x_i, then all the inequalities are satisfied.

Summing the inequalities we get 0 for the left-hand side, and the weight of c for the right-hand side.

So c has weight at least 0, and is not a negative-weight cycle. □
Claim

Let G be the graph corresponding to a system of difference constraints. If G contains a negative-weight cycle, there is no valid solution to the system of constraints.

Proof (sketch)

- We prove the converse: if the system has a valid solution, there is no negative-weight cycle.
Claim

Let G be the graph corresponding to a system of difference constraints. If G contains a negative-weight cycle, there is no valid solution to the system of constraints.

Proof (sketch)

- We prove the converse: if the system has a valid solution, there is no negative-weight cycle.
- Let $c = v_1, \ldots, v_k, v_1$ be an arbitrary cycle on vertices v_1, \ldots, v_k (without loss of generality). This corresponds to the inequalities

 \[x_2 - x_1 \leq b_{12}, \quad x_3 - x_2 \leq b_{23}, \quad \ldots, \quad x_1 - x_k \leq b_{k1}. \]
Claim

Let G be the graph corresponding to a system of difference constraints. If G contains a negative-weight cycle, there is no valid solution to the system of constraints.

Proof (sketch)

- We prove the converse: if the system has a valid solution, there is no negative-weight cycle.
- Let $c = v_1, \ldots, v_k, v_1$ be an arbitrary cycle on vertices v_1, \ldots, v_k (without loss of generality). This corresponds to the inequalities

 \[x_2 - x_1 \leq b_{12}, \quad x_3 - x_2 \leq b_{23}, \quad \ldots, \quad x_1 - x_k \leq b_{k1}. \]

- If there is a valid solution x_i, then all the inequalities are satisfied.
Claim

Let G be the graph corresponding to a system of difference constraints. If G contains a negative-weight cycle, there is no valid solution to the system of constraints.

Proof (sketch)

- We prove the converse: if the system has a valid solution, there is no negative-weight cycle.
- Let $c = v_1, \ldots, v_k, v_1$ be an arbitrary cycle on vertices v_1, \ldots, v_k (without loss of generality). This corresponds to the inequalities

 \[x_2 - x_1 \leq b_{12}, \quad x_3 - x_2 \leq b_{23}, \quad \ldots, \quad x_1 - x_k \leq b_{k1}. \]

- If there is a valid solution x_i, then all the inequalities are satisfied.
- Summing the inequalities we get 0 for the left-hand side, and the weight of c for the right-hand side.
Claim

Let G be the graph corresponding to a system of difference constraints. If G contains a negative-weight cycle, there is no valid solution to the system of constraints.

Proof (sketch)

- We prove the converse: if the system has a valid solution, there is no negative-weight cycle.
- Let $c = v_1, \ldots, v_k, v_1$ be an arbitrary cycle on vertices v_1, \ldots, v_k (without loss of generality). This corresponds to the inequalities
 \[x_2 - x_1 \leq b_{12}, \quad x_3 - x_2 \leq b_{23}, \quad \ldots, \quad x_1 - x_k \leq b_{k1}. \]
- If there is a valid solution x_i, then all the inequalities are satisfied.
- Summing the inequalities we get 0 for the left-hand side, and the weight of c for the right-hand side.
- So c has weight at least 0, and is not a negative-weight cycle.

□
Example

The set of inequalities

\[x_1 - x_2 \leq 5, \quad x_2 - x_3 \leq -2, \quad x_1 - x_4 \leq 0 \]

corresponds to the graph

So \(x_1 = 0, \quad x_2 = -2, \quad x_3 = 0, \quad x_4 = 0 \) is a solution to the constraints.
Example

The set of inequalities

\[x_1 - x_2 \leq 5, \quad x_2 - x_3 \leq -2, \quad x_1 - x_4 \leq 0 \]

corresponds to the graph

with shortest paths

\[\delta(v_0, v_1) = 0, \quad \delta(v_0, v_2) = -2, \quad \delta(v_0, v_3) = 0, \quad \delta(v_0, v_4) = 0. \]

So

\[x_1 = 0, \quad x_2 = -2, \quad x_3 = 0, \quad x_4 = 0 \]

is a solution to the constraints.
Solving difference constraints

- We can run Bellman-Ford with v_0 as the source.

- For a solution to a system of m difference constraints on n variables, the graph produced has $n + 1$ vertices and $m + n$ edges.

- The running time of Bellman-Ford is thus $O(VE) = O(mn + n^2)$.

- This can be improved to $O(mn)$ time (CLRS exercise 24.4-5).
Solving difference constraints

- We can run Bellman-Ford with v_0 as the source.

- If there is a negative-weight cycle, the algorithm detects it (and we output “no solution”); otherwise, we output $x_i = \delta(v_0, v_i)$ as the solution.
Solving difference constraints

- We can run Bellman-Ford with \(v_0 \) as the source.

- If there is a negative-weight cycle, the algorithm detects it (and we output “no solution”); otherwise, we output \(x_i = \delta(v_0, v_i) \) as the solution.

- For a solution to a system of \(m \) difference constraints on \(n \) variables, the graph produced has \(n + 1 \) vertices and \(m + n \) edges.

- The running time of Bellman-Ford is thus \(O(VE) = O(mn + n^2) \).
Solving difference constraints

- We can run Bellman-Ford with v_0 as the source.

- If there is a negative-weight cycle, the algorithm detects it (and we output “no solution”); otherwise, we output $x_i = \delta(v_0, v_i)$ as the solution.

- For a solution to a system of m difference constraints on n variables, the graph produced has $n + 1$ vertices and $m + n$ edges.

- The running time of Bellman-Ford is thus $O(VE) = O(mn + n^2)$.

- This can be improved to $O(mn)$ time (CLRS exercise 24.4-5).
Application 2: Currency exchange

Imagine we have n different currencies, and a table T whose (i,j)’th entry T_{ij} represents the exchange rate we get when converting currency i to currency j. For example:

<table>
<thead>
<tr>
<th></th>
<th>£</th>
<th>$</th>
<th>€</th>
</tr>
</thead>
<tbody>
<tr>
<td>£</td>
<td>1</td>
<td>1.61</td>
<td>1.18</td>
</tr>
<tr>
<td>$</td>
<td>0.62</td>
<td>1</td>
<td>0.74</td>
</tr>
<tr>
<td>€</td>
<td>0.85</td>
<td>1.35</td>
<td>1</td>
</tr>
</tbody>
</table>

If we convert currency $i \rightarrow j \rightarrow k$, the rate we get is the product of the individual rates.

If we convert $i \rightarrow j \rightarrow \cdots \rightarrow i$, and the product of the rates is greater than 1, we have made money by exploiting the exchange rates! This is called arbitrage.

We can use Bellman-Ford to determine whether arbitrage is possible.
Application 2: Currency exchange

Imagine we have n different currencies, and a table T whose (i,j)’th entry T_{ij} represents the exchange rate we get when converting currency i to currency j. For example:

<table>
<thead>
<tr>
<th></th>
<th>£</th>
<th>$</th>
<th>€</th>
</tr>
</thead>
<tbody>
<tr>
<td>£</td>
<td>1</td>
<td>1.61</td>
<td>1.18</td>
</tr>
<tr>
<td>$</td>
<td>0.62</td>
<td>1</td>
<td>0.74</td>
</tr>
<tr>
<td>€</td>
<td>0.85</td>
<td>1.35</td>
<td>1</td>
</tr>
</tbody>
</table>

- If we convert currency $i \rightarrow j \rightarrow k$, the rate we get is the product of the individual rates.
Application 2: Currency exchange

Imagine we have n different currencies, and a table T whose (i,j)’th entry T_{ij} represents the exchange rate we get when converting currency i to currency j. For example:

<table>
<thead>
<tr>
<th></th>
<th>£</th>
<th>$</th>
<th>€</th>
</tr>
</thead>
<tbody>
<tr>
<td>£</td>
<td>1</td>
<td>1.61</td>
<td>1.18</td>
</tr>
<tr>
<td>$</td>
<td>0.62</td>
<td>1</td>
<td>0.74</td>
</tr>
<tr>
<td>€</td>
<td>0.85</td>
<td>1.35</td>
<td>1</td>
</tr>
</tbody>
</table>

- If we convert currency $i \rightarrow j \rightarrow k$, the rate we get is the product of the individual rates.
- If we convert $i \rightarrow j \rightarrow \cdots \rightarrow i$, and the product of the rates is greater than 1, we have made money by exploiting the exchange rates! This is called arbitrage.
Application 2: Currency exchange

Imagine we have n different currencies, and a table T whose (i, j)’th entry T_{ij} represents the exchange rate we get when converting currency i to currency j. For example:

$$
\begin{array}{ccc}
£ & $ & € \\
£ & 1 & 1.61 & 1.18 \\
$ & 0.62 & 1 & 0.74 \\
€ & 0.85 & 1.35 & 1 \\
\end{array}
$$

- If we convert currency $i \rightarrow j \rightarrow k$, the rate we get is the product of the individual rates.
- If we convert $i \rightarrow j \rightarrow \cdots \rightarrow i$, and the product of the rates is greater than 1, we have made money by exploiting the exchange rates! This is called arbitrage.
- We can use Bellman-Ford to determine whether arbitrage is possible.
Application: Currency exchange

We produce a weighted graph G from the currency table, where the weight of edge $i \rightarrow j$ is $-\log_2 T_{ij}$. For example:

\[
\begin{align*}
\text{£} & \quad -0.69 & \quad 0.69 & \quad -0.23 & \quad 0.43 & \quad -0.43 \\
\text{\€} & \quad -0.43 & \quad 0.43 & \quad -0.69 & \quad 0.23 & \quad -0.23
\end{align*}
\]

Then the weight of a cycle $c_0 \rightarrow c_1 \rightarrow \cdots \rightarrow c_k$ (with $c_k = c_0$) is

\[\sum_{j=1}^{k} \log_2 T_{c_j c_j} - 1 = -\log_2 \prod_{j=1}^{k} T_{c_j c_j} - 1.\]

This will be negative if and only if $\prod_{j=1}^{k} T_{c_j c_j} - 1 > 1$, i.e., the sequence of transactions corresponds to an arbitrage opportunity.

So G has a negative-weight cycle if and only if arbitrage is possible.
Application: Currency exchange

We produce a weighted graph G from the currency table, where the weight of edge $i \rightarrow j$ is $-\log_2 T_{ij}$. For example:

$$
\begin{array}{c}
\$ \\
0.69 \\
-0.43 \\
0.43 \\
-0.69 \\
0.23 \\
\end{array} \quad \begin{array}{c}
£ \\
-0.23 \\
\end{array}
$$

Then the weight of a cycle $c_0 \rightarrow c_1 \rightarrow \cdots \rightarrow c_k$ (with $c_k = c_0$) is

$$
- \sum_{j=1}^{k} \log_2 T_{c_j c_{j-1}} = - \log_2 \prod_{j=1}^{k} T_{c_j c_{j-1}}.
$$

This will be negative if and only if $\prod_{j=1}^{k} T_{c_j c_{j-1}} > 1$, i.e. the sequence of transactions corresponds to an arbitrage opportunity.

So G has a negative-weight cycle if and only if arbitrage is possible.
Application: Currency exchange

We produce a weighted graph G from the currency table, where the weight of edge $i \rightarrow j$ is $-\log_2 T_{ij}$. For example:

- £ \rightarrow $\$$: -0.69
- $\$ \rightarrow £: 0.69
- £ \rightarrow €: -0.23
- € \rightarrow £: 0.23
- £ \rightarrow €: 0.43
- € \rightarrow £: -0.43

Then the weight of a cycle $c_0 \rightarrow c_1 \rightarrow \cdots \rightarrow c_k$ (with $c_k = c_0$) is

$$- \sum_{j=1}^{k} \log_2 T_{c_j c_{j-1}} = - \log_2 \prod_{j=1}^{k} T_{c_j c_{j-1}}.$$

This will be negative if and only if $\prod_j T_{c_j c_{j-1}} > 1$, i.e. the sequence of transactions corresponds to an arbitrage opportunity.
Application: Currency exchange

We produce a weighted graph G from the currency table, where the weight of edge $i \to j$ is $-\log_2 T_{ij}$. For example:

$$
\begin{array}{c}
\$ \\
\text{-0.43} \\
\text{0.69} \\
\text{0.23} \\
\text{-0.23} \\
\\€
\end{array}
\quad
\begin{array}{c}
\text{0.43} \\
\£
\end{array}
$$

▶ Then the weight of a cycle $c_0 \to c_1 \to \cdots \to c_k$ (with $c_k = c_0$) is

$$
- \sum_{j=1}^{k} \log_2 T_{c_jc_{j-1}} = - \log_2 \prod_{j=1}^{k} T_{c_jc_{j-1}}.
$$

▶ This will be negative if and only if $\prod_{j} T_{c_jc_{j-1}} > 1$, i.e. the sequence of transactions corresponds to an arbitrage opportunity.

▶ So G has a negative-weight cycle if and only if arbitrage is possible.
The Bellman-Ford algorithm solves the single-source shortest paths problem in time $O(VE)$.

It works if the input graph has negative-weight edges, and can detect negative-weight cycles.

Although the proof of correctness is a bit technical, the algorithm is easy to implement and doesn’t use any complicated data structures.

It can be used to solve a system of difference constraints and to determine whether arbitrage is possible.
Further Reading

- **Introduction to Algorithms**
 - Chapter 24 – Single-Source Shortest Paths

- **Algorithms**
 S. Dasgupta, C.H. Papadimitriou and U.V. Vazirani
 http://www.cse.ucsd.edu/users/dasgupta/mcgrawhill/
 - Chapter 4, Section 4.6 – Shortest paths in the presence of negative edges

- **Algorithms lecture notes, University of Illinois**
 Jeff Erickson
 http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/
 - Lecture 19 – Single-source shortest paths
Richard E. Bellman (1920–1984)

- American mathematician who worked at Princeton, Stanford, the RAND Corporation and the University of Southern California.
- Author of at least 621 papers and 41 books, including 100 papers after the removal of a brain tumour left him severely disabled.
- Winner of the IEEE Medal of Honor in 1979 for his invention of dynamic programming.
Biographical notes

<table>
<thead>
<tr>
<th>Lester Ford, Jr. (1927–)</th>
</tr>
</thead>
<tbody>
<tr>
<td>▶ Another American mathematician whose other contributions include the Ford-Fulkerson algorithm for maximum flow problems.</td>
</tr>
<tr>
<td>▶ His father was also a mathematician and, at one point, President of the Mathematical Association of America.</td>
</tr>
</tbody>
</table>

Pic: tangrammit.com