Shor’s algorithm. In this question you will work through the final steps of the integer factorisation algorithm. You might like to use a calculator or computer for some of the parts. Suppose we would like to factorise \(N = 33 \).

(a) What value do we choose for \(M \)?

Answer: \(M \) is the smallest power of 2 larger than \(N^2 = 1089 \), so \(M = 2048 \).

(b) Now suppose we randomly choose \(a = 2 \). What is the order \(r \) of \(a \mod N \)?

Answer: By explicit multiplication, the order is 10.

(c) Now suppose we get measurement outcome \(y = 614 \). Is this a “good” outcome of the form \(\lfloor \ell M/r \rfloor \) for some integer \(\ell \)?

Answer: Yes: \(3 \times 2048/10 = 614.4 \), and the outcome is the closest integer to this.

(d) Write \(z = y/M \) as a continued fraction.

Answer: To start, we have \(z = 307/1024 \). So

\[
z = \frac{1}{1024} = \frac{1}{3} + \frac{1}{307} = \frac{1}{3 + \frac{1}{307}} = \frac{1}{3 + \frac{1}{2 + \frac{1}{307}}} = \frac{1}{3 + \frac{1}{2 + \frac{1}{50 + \frac{1}{2}}}}.
\]

(e) Write down the convergents of this continued fraction and hence show that the algorithm correctly outputs the order of \(a \mod N \).

Answer: The convergents are obtained by truncating this expansion, i.e.

\[
\frac{1}{3}, \quad \frac{1}{3 + \frac{1}{2}} = \frac{2}{7}, \quad \frac{1}{3 + \frac{1}{2 + \frac{1}{7}}} = \frac{3}{10}, \quad \frac{1}{3 + \frac{1}{2 + \frac{1}{50 + \frac{1}{2}}}} = \frac{152}{507}.
\]

We want to find a convergent that is within \(1/(2N^2) = 1/2178 \) of \(z = 307/1024 \) and has denominator at most \(N = 33 \). Doing the calculations shows that 1/3 and
2/7 are not within 1/2178 of z, while 152/507 is ruled out because of its large denominator. So the only option is 3/10, which is indeed close enough. Therefore we output the denominator 10, which is indeed the order of a mod N.

Note that \(a^{r/2} - 1 = 31 \) and \(N \) are coprime, so the final step of the algorithm fails!

2. A simple case of phase estimation. Consider the phase estimation procedure with \(n = 1 \), applied to a unitary \(U \) and an eigenstate \(|\psi\rangle\) such that \(U|\psi\rangle = e^{i\theta}|\psi\rangle\).

(a) Write down a full circuit for the quantum phase estimation algorithm in this case.

Answer:

\[
|0\rangle \rightarrow H \rightarrow H \rightarrow U \rightarrow |\psi\rangle
\]

(b) By tracking the input state through the circuit, write down the final state at the end of the algorithm. What is the probability that the outcome 1 is returned when the first register is measured?

Answer: We have

\[
|0\rangle|\psi\rangle \mapsto \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)|\psi\rangle \mapsto \frac{1}{\sqrt{2}}(|0\rangle + e^{i\theta}|1\rangle)|\psi\rangle \mapsto \frac{1}{2}((1 + e^{i\theta})|0\rangle + (1 - e^{i\theta})|1\rangle)|\psi\rangle
\]

so the probability that 1 is returned is \(\frac{1}{4}|1 - e^{i\theta}|^2 = \sin^2(\theta/2) \).

(c) Imagine we are promised that either \(U|\psi\rangle = |\psi\rangle \), or \(U|\psi\rangle = -|\psi\rangle \), but we have no other information about \(U \) and \(|\psi\rangle \). Argue that the above circuit can be used to determine which of these is the case with certainty.

Answer: In the first case, we have \(\theta = 0 \), so the measurement returns 0 with certainty. In the second case, \(\theta = \pi \), so the measurement returns 1 with certainty. Thus we can distinguish between the two cases as required.

3. More efficient quantum simulation. (NB: not yet covered in lectures, so this question is optional. However, it should be solvable by reading the lecture notes.)

(a) Let \(A \) and \(B \) be Hermitian operators with \(\|A\| \leq \delta, \|B\| \leq \delta \) for some \(\delta \leq 1 \). Show that

\[
e^{-iA/2}e^{-iB}e^{-iA/2} = e^{-i(A+B)} + O(\delta^3)
\]
(this is the so-called \textit{Strang splitting}). Use this to give a more efficient quantum algorithm for simulating k-local Hamiltonians than the algorithm discussed in the lecture, and calculate its complexity.

(b) Let H be a Hamiltonian which can be written as $H = UDU^\dagger$, where U is a unitary matrix that can be implemented by a quantum circuit running in time $\text{poly}(n)$, and $D = \sum_x d(x) |x\rangle \langle x|$ is a diagonal matrix such that the map $|x\rangle \mapsto e^{-i d(x) t} |x\rangle$ can be implemented in time $\text{poly}(n)$ for all x. Show that $e^{-i H t}$ can be implemented in time $\text{poly}(n)$.

4. \textbf{Factoring via phase estimation (optional but interesting).} Fix two coprime positive integers x and N such that $x < N$, and let U_x be the unitary operator defined by $U_x|y\rangle = |xy \pmod N\rangle$. Let r be the order of $x \pmod N$ (the minimal t such that $x^t \equiv 1$). For $0 \leq s \leq r - 1$, define the states

$$|\psi_s\rangle := \frac{1}{\sqrt{r}} \sum_{k=0}^{r-1} e^{-\frac{2\pi is}{r}} |x^k \pmod N\rangle.$$

(a) Verify that U_x is indeed unitary.

\textbf{Answer:} For U_x to be a permutation of basis states, we require $xy \equiv xz \pmod N \Rightarrow y = z$, i.e. taking $w = y - z$, we need that $xw \equiv 0 \Rightarrow w = 0$. But this holds because x is coprime to N.

(b) Show that each state $|\psi_s\rangle$ is an eigenvector of U_x with eigenvalue $e^{2\pi is/r}$.

\textbf{Answer:} By direct calculation,

$$U_x|\psi_s\rangle = \frac{1}{\sqrt{r}} \sum_{k=0}^{r-1} e^{-\frac{2\pi is}{r}} U_x|x^k\rangle = \frac{1}{\sqrt{r}} \sum_{k=0}^{r-1} e^{-\frac{2\pi is}{r}} |x^{k+1}\rangle$$

$$= \frac{1}{\sqrt{r}} \sum_{k=0}^{r-1} e^{-\frac{2\pi is(k-1)}{r}} |x^k\rangle = e^{\frac{2\pi is}{r}} |\psi_s\rangle.$$

(c) Show that

$$\frac{1}{\sqrt{r}} \sum_{s=0}^{r-1} |\psi_s\rangle = |1\rangle.$$

\textbf{Answer:}

$$\frac{1}{\sqrt{r}} \sum_{s=0}^{r-1} |\psi_s\rangle = \frac{1}{r} \sum_{k=0}^{r-1} \left(\sum_{s=0}^{r-1} e^{-\frac{2\pi is}{r}} \right) |x^k\rangle = |1\rangle.$$
(d) Thus show that, if the phase estimation algorithm with n qubits is applied to U_x using $|1\rangle$ as an “eigenvector”, the algorithm outputs an estimate of s/r accurate up to n bits, for $s \in \{0, \ldots, r-1\}$ picked uniformly at random, with probability lower bounded by a constant.

Answer: If $|\psi_s\rangle$ were input to the algorithm, we would get an estimate of s/r accurate up to n bits with probability lower-bounded by a constant. As we are using a uniform superposition over the states $|\psi_s\rangle$, we get each possible choice of s/r with equal probability.

(e) Show that, for arbitrary integer $n \geq 0$, $U_x^{2^n}$ can be implemented in time polynomial in n and $\log N$ (not polynomial in $2^n!$).

Answer: The operator $U_x^{2^n}$ simply performs the map $|y\rangle \mapsto |x^{2^n}y \pmod N\rangle$, i.e. multiplies y by x^{2^n}. To perform this multiplication, we can use repeated squaring:

$$x^{2^n} = (x^{2^{n-1}})^2 = ((x^{2^{n-2}})^2)^2 = \cdots = ((x^2)^2 \cdots)^2,$$

where x is squared n times. Each squaring step takes time at most poly(n).

(f) Argue that this implies that the phase estimation algorithm can be used to factorise an integer N in poly($\log N$) time.

Answer: As we recall from Shor’s algorithm, it suffices to compute the period r of a randomly chosen integer $1 < a < N$ to factorise N. Applying the phase estimation algorithm with $n = O(\log N)$ qubits to the operator U_a, we obtain an integer c such that $|c/2^n - s/r| < 1/2^{n+1}$, for randomly chosen s, in time poly($\log N$) time. Using the theory of continued fractions, we can go from this to determining s/r and hence r.
