QUANTUM COMPUTATION

Exercise sheet 4

Ashley Montanaro, University of Bristol ashley.montanaro@bristol.ac.uk

- 1. Shor's algorithm. In this question you will work through the final steps of the integer factorisation algorithm. You might like to use a calculator or computer for some of the parts. Suppose we would like to factorise N=33.
 - (a) What value do we choose for M?
 - (b) Now suppose we randomly choose a = 2. What is the order r of $a \mod N$?
 - (c) Now suppose we get measurement outcome y = 614. Is this a "good" outcome of the form $\lfloor \ell M/r \rfloor$ for some integer ℓ ?
 - (d) Write z = y/M as a continued fraction.
 - (e) Write down the convergents of this continued fraction and hence show that the algorithm correctly outputs the order of $a \mod N$.
- 2. A simple case of phase estimation. Consider the phase estimation procedure with n=1, applied to a unitary U and an eigenstate $|\psi\rangle$ such that $U|\psi\rangle = e^{i\theta}|\psi\rangle$.
 - (a) Write down a full circuit for the quantum phase estimation algorithm in this case.
 - (b) By tracking the input state through the circuit, write down the final state at the end of the algorithm. What is the probability that the outcome 1 is returned when the first register is measured?
 - (c) Imagine we are promised that either $U|\psi\rangle = |\psi\rangle$, or $U|\psi\rangle = -|\psi\rangle$, but we have no other information about U and $|\psi\rangle$. Argue that the above circuit can be used to determine which of these is the case with certainty.
- 3. More efficient quantum simulation. (NB: not yet covered in lectures, so this question is optional. However, it should be solvable by reading the lecture notes.)
 - (a) Let A and B be Hermitian operators with $||A|| \leq \delta$, $||B|| \leq \delta$ for some $\delta \leq 1$. Show that

$$e^{-iA/2}e^{-iB}e^{-iA/2} = e^{-i(A+B)} + O(\delta^3)$$

(this is the so-called $Strang\ splitting$). Use this to give a more efficient quantum algorithm for simulating k-local Hamiltonians than the algorithm discussed in the lecture, and calculate its complexity.

- (b) Let H be a Hamiltonian which can be written as $H = UDU^{\dagger}$, where U is a unitary matrix that can be implemented by a quantum circuit running in time poly(n), and $D = \sum_{x} d(x)|x\rangle\langle x|$ is a diagonal matrix such that the map $|x\rangle \mapsto e^{-id(x)t}|x\rangle$ can be implemented in time poly(n) for all x. Show that e^{-iHt} can be implemented in time poly(n).
- 4. Factoring via phase estimation (optional but interesting). Fix two coprime positive integers x and N such that x < N, and let U_x be the unitary operator defined by $U_x|y\rangle = |xy \pmod{N}\rangle$. Let r be the order of $x \pmod{N}$ (the minimal t such that $x^t \equiv 1$). For $0 \le s \le r 1$, define the states

$$|\psi_s\rangle := \frac{1}{\sqrt{r}} \sum_{k=0}^{r-1} e^{-2\pi i s k/r} |x^k \pmod{N}\rangle.$$

- (a) Verify that U_x is indeed unitary.
- (b) Show that each state $|\psi_s\rangle$ is an eigenvector of U_x with eigenvalue $e^{2\pi i s/r}$.
- (c) Show that

$$\frac{1}{\sqrt{r}} \sum_{s=0}^{r-1} |\psi_s\rangle = |1\rangle.$$

- (d) Thus show that, if the phase estimation algorithm with n qubits is applied to U_x using $|1\rangle$ as an "eigenvector", the algorithm outputs an estimate of s/r accurate up to n bits, for $s \in \{0, \ldots, r-1\}$ picked uniformly at random, with probability lower bounded by a constant.
- (e) Show that, for arbitrary integer $n \geq 0$, $U_x^{2^n}$ can be implemented in time polynomial in n and $\log N$ (not polynomial in 2^n !).
- (f) Argue that this implies that the phase estimation algorithm can be used to factorise an integer N in poly(log N) time.