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1. Shor’s 9 qubit code. Imagine we encode the state |ψ〉 = α|0〉 + β|1〉 using Shor’s 9
qubit code, and then an X error occurs on the 8th qubit of the encoded state |E(ψ)〉.

(a) Write down the state following the error.

Answer:

1

2
√

2
(α(|000〉+ |111〉)(|000〉+ |111〉)(|010〉+ |101〉)

+ β(|000〉 − |111〉)(|000〉 − |111〉)(|010〉 − |101〉)).

(b) We now decode the encoded state, starting by applying the bit-flip code decod-
ing algorithm. What are the syndromes returned by the measurements in the
algorithm?

Answer: Using the table in the lecture notes, the syndromes are 00, 00, 10.

(c) Now imagine that |E(ψ)〉 is affected by two X errors, on the 7th and 8th qubits.
What are the syndromes returned this time? What state does the decoding algo-
rithm output?

Answer: Now the syndromes are 00, 00, 01. The decoding algorithm thus
thinks there has been an X error on the 9th qubit. So it “corrects” this by
applying an X operation on this qubit, to give the state

1

2
√

2
(α(|000〉+ |111〉)(|000〉+ |111〉)(|000〉+ |111〉)

− β(|000〉 − |111〉)(|000〉 − |111〉)(|000〉 − |111〉)).

Note that β now has a minus sign in front of it. After the bit-flip decoding, we
are left with α|+ ++〉 − β| − −−〉, which is then decoded to α|0〉 − β|1〉.

(d) Which patterns of X errors are corrected by Shor’s 9 qubit code?

Answer: If there is at most one X error in each block of 3 qubits, these will
be corrected properly. We have just seen that, if two errors occur in one block,

1



the sign of β will be flipped, but the state is not otherwise affected; a similar
argument holds for 3 errors in one block. So the output state will be correct if
the number of blocks in which at least two errors occur is even (as then β will
eventually be left unchanged).

2. Stabilizers.

(a) Show that 1√
2
(|01〉 − |10〉) is stabilized by {−X ⊗X,−Z ⊗ Z}.

Answer: Direct calculation: (X ⊗ X) 1√
2
(|01〉 − |10〉) = 1√

2
(|10〉 − |01〉) =

− 1√
2
(|01〉 − |10〉), and similarly for Z ⊗ Z.

(b) Show that 1√
2
(|01〉+ |10〉) is a stabilizer state and write down its stabilizer.

Answer: This can be shown either by experimenting with Pauli matrices on 2
qubits, or using the fact that 1√

2
(|01〉 + |10〉) = (I ⊗ X) 1√

2
(|00〉 + |11〉), so the

stabilizer of 1√
2
(|01〉+ |10〉) must be the same as that of 1√

2
(|00〉+ |11〉) conjugated

by I ⊗X. The final answer is {X ⊗X,−Z ⊗ Z}.

(c) List all the stabilizer states of one qubit.

Answer: These can be determined by considering the eigenvectors of the Pauli
matrices. Up to overall phases, the states are:

State Stabilizer
|0〉 {I, Z}
|1〉 {I,−Z}

1√
2
(|0〉+ |1〉) {I,X}

1√
2
(|0〉 − |1〉) {I,−X}

1√
2
(|0〉+ i|1〉) {I, Y }

1√
2
(|0〉 − i|1〉) {I,−Y }

(d) Prove the claim in the lecture notes that every pair of Pauli matrices on n qubits,
i.e. matrices of the form

M = M1 ⊗M2 ⊗ · · · ⊗Mn,

where for each i, Mi ∈ {I,X, Y, Z}, either commutes or anticommutes.

Answer: It can be shown by direct calculation that every pair of Pauli matrices
on one qubit either commutes or anticommutes (e.g. XY = −Y X). Let M and
M ′ be Pauli matrices on n qubits. We have

MM ′ = (M1M
′
1)⊗ (M2M

′
2)⊗ · · · ⊗ (MnM

′
n)
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and, for all i, MiM
′
i = ±M ′

iMi. Multiplying out the signs, MM ′ = ±M ′M , so M
and M ′ either commute or anticommute.
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