1. More efficient quantum simulation.

(a) Let A and B be Hermitian operators with $\|A\| \leq \delta$, $\|B\| \leq \delta$ for some $\delta \leq 1$. Show that
\[
e^{-iA/2}e^{-iB}e^{-iA/2} = e^{-i(A+B)} + O(\delta^3)
\]
(this is the so-called Strang splitting). Use this to give a more efficient quantum algorithm for simulating k-local Hamiltonians than the algorithm discussed in the lecture, and calculate its complexity.

Answer:
\[
e^{-iA/2}e^{-iB}e^{-iA/2} = \left(I - \frac{iA}{2} - \frac{A^2}{8} + O(\delta^3)\right) \left(I - \frac{iB}{2} - \frac{B^2}{2} - \frac{AB}{2} - \frac{BA}{2} - \frac{B^2}{2} + O(\delta^3)\right)
\]
\[
= I - iA - iB - (A+B)^2/2 + O(\delta^3)
\]
\[
= e^{-i(A+B)} + O(\delta^3).
\]
Plugging this in to the argument of the lecture notes, for operators H_1, H_2, \ldots, H_m such that $\|H_i\| \leq \delta$ we obtain
\[
e^{-iH_1/2}e^{-iH_2/2} \ldots e^{-iH_m} = e^{-i(H_1+\ldots+H_m)} + O(m^4\delta^3).
\]
So, for some universal constant C, if $p \geq Cm^2(t\delta)^{3/2}/\epsilon^{1/2}$,
\[
\left\|\left(e^{-iH_1t/(2p)}e^{-iH_2t/(2p)} \ldots e^{-iH_{m-1}t/(2p)}e^{-iH_m t/(2p)}\right)^p - e^{-i(H_1+\ldots+H_m)t}\right\| \leq \epsilon.
\]
Thus a k-local Hamiltonian which is a sum of m terms H_1, \ldots, H_m, where $\|H_i\| \leq 1$, can be simulated for time t in $O(m^3t^{3/2}/\epsilon^{1/2})$ steps.

(b) Let H be a Hamiltonian on n qubits which can be written as $H = UDU^\dagger$, where U is a unitary matrix that can be implemented by a quantum circuit running in time $\text{poly}(n)$, and $D = \sum_x d(x)|x\rangle\langle x|$ is a diagonal matrix such that the map $|x\rangle \mapsto e^{-id(x)t}|x\rangle$ can be implemented in time $\text{poly}(n)$ for all x. Show that e^{-iHt} can be implemented in time $\text{poly}(n)$.
Answer: By linearity, the unitary operator which performs the map $|x\rangle \mapsto e^{-id(x)t}|x\rangle$ is equal to the matrix e^{-iDt}. And by the identity

$$U^\dagger e^{-iDt}U = e^{-iU^\dagger DUt} = e^{-iHt},$$

performing U, then e^{-iDt}, then U^\dagger, suffices to implement e^{-iHt}. Each of these steps can be carried out in time $\text{poly}(n)$.

2. The amplitude damping channel. The amplitude damping channel \mathcal{E}_{AD} has Kraus operators (with respect to the standard basis)

$$E_0 = \begin{pmatrix} 1 & 0 \\ 0 & \sqrt{1-\gamma} \end{pmatrix}, \quad E_1 = \begin{pmatrix} 0 & \sqrt{\gamma} \\ 0 & 0 \end{pmatrix}$$

for some γ.

(a) What is the result of applying the amplitude damping channel to the pure state $\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$?

Answer: Using the Kraus operators, we can calculate directly that the answer is the mixed state

$$\frac{1}{2} \begin{pmatrix} 1 + \gamma & \sqrt{1-\gamma} \\ \sqrt{1-\gamma} & 1 - \gamma \end{pmatrix}.$$

(b) Show that, when applied to the Pauli matrices X, Y, Z, \mathcal{E}_{AD} rescales each one by a factor depending on γ, and determine what these factors are.

Answer: Using the Kraus operators again, we get

$$\mathcal{E}_{AD}(X) = \sqrt{1-\gamma}X, \quad \mathcal{E}_{AD}(Y) = \sqrt{1-\gamma}Y, \quad \mathcal{E}_{AD}(Z) = (1-\gamma)Z$$

by direct calculation.

(c) Hence determine the representation of the amplitude-damping channel as an affine map $v \mapsto Av + b$ on the Bloch sphere.

Answer: We can calculate

$$\mathcal{E}_{AD}\left(\frac{I}{2}\right) = E_0 \frac{I}{2} E_0^\dagger + E_1 \frac{I}{2} E_1^\dagger = \frac{1}{2} \begin{pmatrix} 1 + \gamma & 0 \\ 0 & 1 - \gamma \end{pmatrix} = \frac{1}{2}(I + \gamma Z),$$

which tells us that $b = (0,0,\gamma)$. We can then use the previous question to determine A by writing down the columns of A, with respect to the standard basis, in terms of the coefficients obtained there.

$$A = \begin{pmatrix} \sqrt{1-\gamma} & 0 & 0 \\ 0 & \sqrt{1-\gamma} & 0 \\ 0 & 0 & 1 - \gamma \end{pmatrix}.$$
(d) What does this channel “look like” geometrically in terms of its effect on the Bloch sphere? **Answer:** The channel shrinks the X and Y directions, but leaves the Z direction unchanged. A vector of the form (x, y, z) is mapped to $(\sqrt{1-\gamma x}, \sqrt{1-\gamma y}, z)$. So the amplitude-damping channel squeezes the Bloch sphere into an ellipsoid which is no longer centred on $I/2$.

3. **General quantum channels.**

(a) Given two channels $\mathcal{E}_1, \mathcal{E}_2$, with Kraus operators $\{E_k^{(1)}\}, \{E_k^{(2)}\}$, what is the Kraus representation of the composite channel $\mathcal{E}_2 \circ \mathcal{E}_1$ which is formed by first applying \mathcal{E}_1, then applying \mathcal{E}_2?

Answer: The output of the composite channel applied to ρ is

$$
(\mathcal{E}_2 \circ \mathcal{E}_1)(\rho) = \mathcal{E}_2 \left(\sum_j E_j^{(1)} \rho (E_j^{(1)})^\dagger \right) = \sum_k E_k^{(2)} \left(\sum_j E_j^{(1)} \rho (E_j^{(1)})^\dagger \right) (E_k^{(2)})^\dagger
$$

$$
= \sum_{j,k} E_k^{(2)} E_j^{(1)} \rho (E_j^{(1)})^\dagger (E_k^{(2)})^\dagger,
$$

so the Kraus operators are all products of the Kraus operators of \mathcal{E}_1 and \mathcal{E}_2, i.e. $\{E_k^{(2)} E_j^{(1)}\}$.

(b) Determine a Kraus representation for the channel Tr which maps $\rho \mapsto \text{tr} \rho$ for a mixed quantum state ρ in d dimensions.

Answer: The channel has d Kraus operators, $E_k = |k\rangle$:

$$
\text{Tr}(\rho) = \sum_k \langle k|\rho|k \rangle = \text{tr} \rho.
$$

(c) Let \mathcal{E} and \mathcal{F} be quantum channels with d Kraus operators each, E_k and F_k (respectively), such that for all j, $F_j = \sum_{k=1}^d U_{jk} E_k$ for some unitary matrix U. Show that \mathcal{E} and \mathcal{F} are actually the same quantum channel.

Answer: We have

$$
\mathcal{F}(\rho) = \sum_j F_j \rho F_j^\dagger = \sum_j \left(\sum_k U_{jk} E_k \right) \rho \left(\sum_\ell U_{k\ell}^* E_\ell^\dagger \right)
$$

$$
= \sum_{k,\ell} E_k \rho E_\ell^\dagger \sum_k U_{jk} U_{j\ell}^* = \sum_k E_k \rho E_k^\dagger = \mathcal{E}(\rho),
$$

where we use unitarity of U.