1. The QFT and periodicity.

(a) Multiply out the matrices corresponding to the gates in the circuit for the quantum Fourier transform Q_4, in the computational basis, and check that the result is what you expect.

(b) Write the state $Q_8|3⟩$ as a tensor product of three single-qubit states, each of the form $\frac{1}{\sqrt{2}}(|0⟩+e^{2\pi iz}|1⟩)$ for some binary fraction z (i.e. something of the form $(.x_{j-1}...x_0)$). Expand out the resulting state and check that the answer is what you expect.

(c) Let $f: \mathbb{Z}_{16} \to \mathbb{Z}_4$ be the periodic function such that $f(0) = 2$, $f(1) = 1$, $f(2) = 3$, $f(3) = 0$, and $f(x) = f(x - 4)$ for all x (so $f(4) = 2$, etc.).

 i. Work through all the steps of the periodicity determination algorithm, writing down the state at each stage, and assuming that the measurement outcome in step 3 is 1, and the measurement outcome in step 5 is 12. Does the algorithm succeed?

 ii. Now assume that the measurement outcome in step 5 is 8. Does the algorithm succeed?

2. Shor’s algorithm.

(a) Suppose we would like to factorise $N = 85$ and we choose $a = 3$, which is coprime to N. Follow steps 3-5 of the integer factorisation algorithm to factorise 85 using this value of a (calculating the order of a classically!). You might like to use a computer.

(b) Imagine we want to factorise $N = 21$ and we choose $a = 4$. Does the integer factorisation algorithm work or not?

3. Approximate implementation of the QFT (optional). This part proves a claim made at the end of Section 4 of the lecture notes. Define the distance $D(U, V)$ between unitary operators U and V as the maximum over all states $|ψ⟩$ of $\|U|ψ⟩ - V|ψ⟩\|$.

(a) Show that $D(\cdot, \cdot)$ is subadditive: $D(U_1U_2, V_1V_2) \leq D(U_1, V_1) + D(U_2, V_2)$.
(b) Show that $D(R_d, I) = O(2^{-d})$ and argue that the same holds for controlled-R_d.

(c) Describe how to produce a quantum circuit for an operator \tilde{Q}_{2^n} on n qubits such that \tilde{Q}_{2^n} uses $O(n \log n)$ gates and $D(\tilde{Q}_{2^n}, Q_{2^n}) = O(1/n)$.