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Abstract. Aging is a prevalent phenomenon in physics, chemistry and many other fields. In
this paper we consider the aging process of uncoupled Continuous Time Random Walk Limits
(CTRWLs) which are Levy processes time changed by the inverse stable subordinator of index
0 < α < 1. We apply a recent method developed by Meerscheart and Straka of finding the
finite dimensional distributions of CTRWL, to obtaining the aging process’s finite dimensional
distributions, self-similarity-like property, asymptotic behavior and its Fractional Fokker-Planck
equation(FFPE).

1. Introduction

Continuous time random walks(CTRW) are widely used in physics and mathematical finance to
model a random walk for which the waiting times between jumps are random which in many cases
better describes phenomena in these fields. CTRWLs are used to model anomalous diffusion, where
the squared averaged distance of the process from the origin is no longer proportional to the time
index t. A related concept and widely studied ([36, 32]) in statistical physics, is aging. Suppose
the CTRW Xt starts at t = 0 and evolves until time t0 > 0 when we then start to measure it.
One can consider the varying dynamics of the new process Xt0

t = Xt+t0 −Xt0 as t0 varies and the
process ages. In [26] Monthus and Bouchaud studied a CTRW with aging properties. In [6] Barkai
and Cheng considered the Aging Continuous Time Random Walk (ACTRW) which is an uncoupled
CTRW with iid power law waiting times, that started at t = 0 and is observed at t = t0. They
found the one dimensional distribution of the process Xt0

t which they referred to as the ACTRW,
for t0 and t large. In [5], Barkai found the Fractional Fokker-Planck Equation (FFPE) for the
unnormalized pdf of the process Xt0

t for t0 and t large.
In this paper we wish to give analogous results to the ones given in [6, 5] as well as new ones for a
large class of CTRWLs which hopefully will lay the foundation for further study of their aging. We
consider the class that consists of all processes of the form Yt = AEt where At is a Levy process
that is time changed by the inverse of an independent stable subordinator of index 0 < α < 1 ;
we denote this class by S. We denote the aging process by Y t0t = Yt+t0 − Yt0 = AEt+t0 − AEt0
(note that Y 0

t = Yt). Section 2 is devoted to a brief review of the theory and method introduced
by Meerschaert and Straka in [25] and [23] upon which we base our results. In Section 3 we give
the main result of this paper, that the finite dimensional distributions of the process Y t0t can be
obtained by a convolution in time of the finite dimensional distributions of Yt and a generalized
beta prime distribution. The self-similarity-like property of the process Y t0t is obtained in Section
4. In Section 5 we obtain results on the asymptotic behavior of the distribution of Y t0t when t0 is
far from the origin as well as when α→ 1 and the governing equation of Y t0t .
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One example for a process that lies in S is the Fractional Poisson Process(FPP) which we denote
by Nα

t . The FPP is a renewal process with interarrival timesWn such that P (W1 > t) = Eα (−λtα)
where

Eα (z) =
∞∑
k=0

zk

Γ (αk + 1)

is the Mittag-Leffler function. Since the interarrival times are not exponentially distributed the
process Nα

t = sup {k : Tk ≤ t}, where Tk =
∑k
i=1Wi are the arrival times, is not Markovian and

the calculation of the finite dimensional distributions of Nα
t is no longer straightforward. The FPP

was first studied in [16],[13] and [17, 18]. In [8] an integral representation of the one dimensional
distribution of the FPP was given and was used in [28] to find and simulate the finite dimensional
distributions of the FPP. In [19], it was shown that Nα

t = NEt where Nt is a Poisson process and
Et is the inverse of a standard stable subordinator of index 0 < α < 1 independent of Nt.

Since the distribution of the increments (and therefore the aging process) of the CTRWL is closely
related to the two dimensional distributions, their study is quite cumbersome. In a recent paper
([25]), Meerscheart and Straka found a way of embedding CTRWLs in a larger state space that
renders these processes Markovian. We use this method to find the finite dimensional distributions
of the process Y t0t , its asymptotic behavior, self-similarity-like property and its FFPE.

2. Finite dimensional distribution of CTRWL

CTRWL are usually not Markovian, a fact that makes the calculation of their finite dimensional
distributions quite difficult. It is therefore that the distribution of the increments (which can be
obtained by the finite dimensional distributions) of the CTRWL is not well understood.
Although the method in [25] is very general we focus only on uncoupled CTRWLs which are Levy
processes time changed by the inverse of an independent stable subordinator. In order to facilitate
reading of this section and referring to the original paper we retain most of the notation in [25]. The
uncoupled CTRW we consider consist of two independent sequences of iid r.vs, {W c

n} and {Jcn}.
The parameter c is the convergence parameter as in [20] which allows us to construct infinitesimal
triangular arrays. Here, {Jcn} represents the size of the jumps of a particle in space, while {W c

n}
represents the waiting times between jumps. Hence, the time elapsed by the particle’s k’th jump is
T ck = Dc

0+
∑k
i=1W

c
i and the position of the particle is Sck = Ac0+

∑k
i=1 J

c
i . Let Lct = sup{k : T ck ≤ t}

be the number of jumps until time t, then the CTRW Y ct is

Y ct = Ac0 +
Lct∑
i=1

Jci .

Assume we have

(2.1)
(
Sc[cu], T

c
[cu]

)
= (Ac0, Dc

0) +
[cu]∑
i=1

(Jci ,W c
i )⇒ (Au, Du)

where⇒ denotes convergence in the Skorokhod J1 topology. In this paper we assume Du is a stable
subordinator of index 0 < α < 1 starting from D0, i.e, E

(
e−s(Du−D0)) = e−uCs

α , where C is a
constant. This can be achieved by assuming W c

i = c−
1
αWi where {Wi} are independent random

variables that are in the strict domain of attraction of D1−D0. Note that At−A0 is a Lévy process
as it is the limit of a triangular array. Now, let Et = inf{s : Ds > t} be the first hitting time of Dt,



AGING UNCOUPLED CONTINUOUS TIME RANDOM WALK LIMITS 3

also called the inverse of Dt. By [34, Theorem 2.4.3] applied to the case of independent space and
time jumps we have
(2.2) Y ct ⇒ Yt = AEt ,

as c → ∞ where convergence is in the Skorokhod J1 topology, see also [35, theorem 3.6] and [14,
Theorem 3.1]. Since (Sck, T ck ) is a Markov chain for all c > 0 it follows that the CTRWL Yt is a
semi-Markov process and it is possible to embed it in a process of larger state space that includes
the time to regeneration, the remaining life time process Rt. More precisely, let D

(
[0,∞),R2) be

the space of càdlàg functions f : [0,∞) → R2 with the J1 Skorokhod topology which is endowed
with transition operators Tu, u > 0 and hence a probability measure Pχ,τ such that trajectories
start at point (χ, τ) with probability one. Thus, we have a stochastic basis

(
Ω,F∞, (Fu)u≥0 , P

χ,τ
)
,

where each element of Ω is in D
(
[0,∞),R2), Fu = σ ((Au (ω) , Du (ω))) and F∞ = ∨u>0Fu. The

process (A,D)t has a generator of the form

(2.3) A (f) (x, t) = b
∂f(x, t)
∂x

− 1
2a
∂2f(x, t)
∂x2

+
ˆ

R2

(
f (x+ y, t+ w)− f (x, t)− y ∂f(x, t)

∂x
1{|(y,w)|<1}

)
K (dy, dw) ,

where a > 0 and b ∈ R and K (dy, dw) is a Lévy measure. The occupation time measure of the
process (A,D)t is the average time spent by the process in a given Borel set in R2, i.e

ˆ
f (x, t)Uχ,τ (dx, dt) = Eχ,τ

(ˆ ∞
0

f (Au, Du) du
)

=
∞̂

0

Tuf (χ, τ) du.

Let us now define the remaining life time process Rt
Rt = DEt − t,

which is the time left for the process Yt to leave its current state. It was proven in [25, Theorem
2.3] that

(2.4) Eχ,τ (f (Yt, Rt)) = ˆ

x∈R

ˆ

s∈[τ,t]

Uχ,τ (dx, ds)
ˆ

y∈R

ˆ

w∈[t−s,∞)

K (dy, dw) f (x+ y, w − (t− s)) .

In [25], a more general CTRWL is considered and hence a more general form of (2.3) where the
coefficients a and b as well as the Lévy measure K (dy, dw) are allowed to be dependent on the
position of the CTRWL in space and time, that is, we have b (x, t) , a (x, t) and K (x, t; dy, dw). As
was noted in [25, section 4], when these coefficients do not depend on t (as in our case), the process
(Yt, Rt) is a homogeneous Markov process. More precisely, we define

Qt [f ] (y, 0) = Ey,0 (f (Yt, Rt))(2.5)
Qt [f ] (y, r) = 1{0≤t<r}f (y, r − t) + 1{0≤r≤t}Qt−r [f ] (y, 0) r > 0,(2.6)

for every f bounded and measurable on R × [0,∞). Qt is the transition operator of the Markov
process (Yt, Rt) starting at χ, τ , i.e
(2.7) Eχ,τ (f (Yt+h, Rt+h) | σ ((Yr, Rr) , t ≥ r ≥ 0)) = Qh [f ] (Yt, Rt) .
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One can use the Chapman-Kolmogorov’s equation to obtain the finite dimensional distributions of
the process Yt. For example, suppose (Y0, R0) = (0, 0) a.s, then for the two dimensional distribution
of the process Yt at times t1 < t2 we have

(2.8) P (Yt1 ∈ B1, Yt2 ∈ B2) = P ((Yt1 ∈ B1, Rt1 ∈ [0,∞)) , (Yt2 ∈ B2, Rt2 ∈ [0,∞)))
= Qt1

[
1{B1×R} (y1, r1)Qt2−t1

[
1{B2×R} (y2, r2)

]
(y1, r1)

]
(0, 0) ,

where B1, B2 ∈ B (R) are Borel sets.

Remark 1. In [25] a result stronger than (2.7) was shown. Indeed, the process (Yt, Rt) is a strong
Markov process with respect to a filtration larger than the natural filtration. For the sake of brevity
and the fact that the Markov property is adequate for our work we brought the result in a weaker
form.

3. Aging

Let us assume (2.1) holds with χ = τ = 0 so At is a Levy process with CDF Pt (x) =
P (At ∈ (−∞, x]) and with Levy triplet (µ,A, φ), i.e

E
(
eiuAt

)
= exp

t
iµu− 1

2Au
2 +
ˆ

R

(
eiuy − 1− iuy1{|y|<1}

)
φ (dy)

 .
Also assume Dt is a stable subordinator of index 0 < α < 1 with Laplace transform (LT)
E
(
e−uDt

)
= e−tcu

α independent of At. Then (2.3) holds with b = µ, a = A and (see [7, Corollary
2.3])

(3.1) K (dy, dw) = φ (dy) δ0 (dw) + δ0 (dy) cα

Γ (1− α)w
−1−α1{w>0}dw.

Next, we wish to find the occupation measure of the process (A,D)t. We have for f (y, w) =
1{(−∞,x]×(−∞,t]} (y, w)

ˆ
f (y, w)Uχ,τ (dy, dw) = Eχ,τ

 ∞̂

0

f (Au, Du) du


=
∞̂

0

Tuf (χ, τ) du =
∞̂

0

Tu1{(−∞,x]×(−∞,t]} (χ, τ) du

=
∞̂

0

ˆ

w∈R

ˆ

y∈R

1{(−∞,x]×(−∞,t]} (y + χ,w + τ) qu(dy, dw)du,



AGING UNCOUPLED CONTINUOUS TIME RANDOM WALK LIMITS 5

where qt is the distribution of the process (A,D)t cf. [1, Eq. 3.11]. By independence of At and Dt

we have
ˆ
f (x, t)Uχ,τ (dx, dt) =

∞̂

0

P (Au ∈ (−∞, x− χ])P (Du ∈ (−∞, t− τ ]) du

=
∞̂

0

Pu (x− χ)
t−τˆ

−∞

g (w, u) dwdu,(3.2)

where g (x, t) is the pdf of Dt, i.e g (x, t) dx = P (Dt ∈ dx) and is known to be absolutely continuous
with respect to the Lebesgue measure [38, Section 2.4].

Since (A,D)t is a Levy process the coefficients in (2.3) are independent of t and therefore the
process (A,D)t is a Markov additive process [25, Section 4] and the occupation measure is of the
form

(3.3) Uy (dx, dt) =
∞̂

0

Pu (dx− y) g (t, u) dudt.

Furthermore, one may choose τ = 0 and plug (3.1) and (3.3) in (2.4) to obtain

Eχ,0 (f (Yt, Rt)) =
ˆ

x∈R

ˆ

s∈[0,t]

 ˆ
u∈R+

Pu (dx− χ) g (s, u) du


(3.4)

×
ˆ

y∈R

ˆ

w∈[t−s,∞)

(
φ (dy) δ0 (dw) + δ0 (dy) cα

Γ (1− α)w
−1−αdw

)
f (x+ y, w − (t− s)) ds

=
ˆ

x∈R

ˆ

s∈[0,t]

 ˆ
u∈R+

Pu (dx− χ) g (s, u) du


×

ˆ

w∈[t−s,∞)

f (x,w − (t− s)) cα

Γ (1− α)w
−1−αdwds,

for Yt ∈ S and its time to regeneration Rt.
We say that the r.v X has beta distribution with parameters µ, ν > 0 if it has pdf of the form

f (x, µ, ν) = xµ−1 (1− x)ν−1

B [µ, ν] x ∈ (0, 1)

where B [µ, ν] = Γ(µ)Γ(ν)
Γ(µ+ν) is the Beta function and we write X ∼ B (µ, ν) . We say that the r.v X

has beta prime distribution with parameters µ, ν > 0 if it has pdf of the form

(3.5) f (x, µ, ν) = xµ−1 (1 + x)−µ−ν

B [µ, ν] x > 0

and we write X ∼ B′ (µ, ν). It was noted in [12, II.4] that if X ∼ B (µ, ν) then X
1−X ∼ B′ (µ, ν).

The distribution (3.5) can be further generalized to the so called generalized Beta prime distribution
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also known as the general Beta of the second kind distribution whose pdf is

(3.6) f (x, µ, ν, h) =
(
x
h

)µ−1 (1 + x
h

)−µ−ν
h ·B [µ, ν] x > 0

with h, µ, ν > 0 . If X has generalized Beta prime distribution of the form (3.6) then we write
X ∼ GB2 (µ, ν, h).

Theorem 1. Let Y t0t = AEt+t0 − AEt0 where t0 > 0 be the aging process. Let B1, B2, ..., Bk be
Borel sets such that 0 /∈ B1. Let pt0 (r) = f (r, 1− α, α, t0) be a generalized beta prime distribution
as in (3.6). Then we have for 0 < t1 < t2 < · · · < tk
(3.7)

P
(
Y t0t1 ∈ B1, Y

t0
t2 ∈ B2, ..., Y

t0
tk
∈ Bk

)
=

t1ˆ

0

P (Yt1−r ∈ B1, Yt2−r ∈ B2, ..., Ytk−r ∈ Bk) pt0 (r) dr.

Proof. For simplicity, we proof the result for k = 2 , the proof for k > 2 is similar. We have

P
(
Y t0t1 ∈ B1, Y

t0
t2 ∈ B2

)
= Qt0

[
1{R×R} (y0, r0)

× Qt1
[
1{B1+y0×R} (y1, r1)Qt2−t1

[
1{B2+y0×R} (y2, r2)

]
(y1, r1)

]
(y0, r0)

]
(0, 0) .(3.8)

It is easy to see that by (3.4) the semi-group operator Qt is translation invariant with respect to the
space variable when r = 0, i.e, Qt [f ] (y + a, 0) = Q [g] (y, 0) where g (y, r) = f (y + a, r). Moreover,

Qt [f ] (y + a, r) = 1{0≤t<r}f (y + a, r − t) + 1{0≤r≤t}Qt−r [f ] (y + a, 0)
= 1{0≤t<r}g (y, r − t) + 1{0≤r≤t}Qt−r [g] (y, 0)
= Qt [g] (y, r) .

Hence, Qt is translation invariant with respect to the space variable. Consequently, since 0 /∈ B1,
by (2.6) we have

Qt1
[
1{B1+y0×R} (y1, r1)Qt2−t1

[
1{B2+y0×R} (y2, r2)

]
(y1, r1)

]
(y0, r0)

= 1{0≤r0≤t1}Qt1−r0

[
1{B1+y0×R} (y1 + y0, r1)Qt2−t1

[
1{B2+y0×R} (y2, r2)

]
(y1 + y0, r1)

]
(0, 0)

= 1{0≤r0≤t1}Qt1−r0

[
1{B1×R} (y1, r1)Qt2−t1

[
1{B2+y0×R} (y2 + y0, r2)

]
(y1, r1)

]
(0, 0)

= 1{0≤r0≤t1}P (Yt1−r0 ∈ B1, Yt2−r0 ∈ B2) .(3.9)

For ease of notation we write P (Yt1−r0 ∈ B1, Yt2−r0 ∈ B2) = f (r0). Plug (3.9) in (3.8) and use
(3.4) to obtain,

P
(
Y t0t1 ∈ B1, Y

t0
t2 ∈ B2

)
=

ˆ

s′∈[0,t0]

 ˆ

u′∈R+

g (s′, u′) du′
(3.10)

×
ˆ

w′∈[t0−s′,∞)

cα

Γ (1− α)w
−1−αdwds′

×
[
1{0≤w′−(t0−s′)≤t1} × f (w′ − (t0 − s′))

]
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=
ˆ

s′∈[0,t0]

 ˆ

u′∈R+

g (s′, u′) du′
× ˆ

w′∈[t0−s′,t1+t0−s′)

f (w′ − (t0 − s′))

× cα

Γ (1− α)w
′−1−αdw′ds′.

By [31, Eq. 37.12] if Dt is a stable subordinator of index 0 < α < 1 with E
(
e−uXt

)
= e−tcu

α and
probability distribution P (Dt ∈ dx) = g (x, t) dx then its potential density is given by

(3.11) v (s) =
ˆ

u∈R+

g (s, u) du = 1
cΓ (α)s

α−1 s > 0.

Substitute (3.11) in (3.10) and apply the change of variables r = w′ + s′ − t0 to obtain

P
(
Y t0t1 ∈ B1, Y

t0
t2 ∈ B2

)
=

t1ˆ

0

ˆ

s′∈[0,t0]

s′α−1

cΓ (α)f (r) cα

Γ (1− α) (r − s′ + t0)−1−α
ds′dr.(3.12)

Now apply the change of variables v = s′ (r − s′ + t0)−1 to compute the integral with respect to s′
and to obtain

P
(
Y t0t1 ∈ B1, Y

t0
t2 ∈ B2

)
=

t1ˆ

0

f (r)

(
r
t0

)−α (
1 + r

t0

)−1

t0 ·B [α, 1− α] dr

=
t1ˆ

0

P (Yt1−r ∈ B1, Yt2−r ∈ B2) pt1 (r) dr.

�

Remark 2. It follows from Theorem 1 that

(3.13) P
(
Y t0t = 0

)
=
∞̂

t

pt0 (r) dr +
tˆ

0

P (Yt−r = 0) pt0 (r) dr > 0.

Therefore, the distribution of Y t0t has an atom at the origin for every t. More interesting is the fact
that if P (At = 0) = 0(this is true for all processes with pdf) then P

(
Y t0t = 0

)
does not depend

on the choice of the process At. On the other hand it can be easily seen that for every t the

process Y t0t has density on R \{0} given by pt0 (x, t) =
tˆ

0

p (x, t− r) pt0 (r) dr whenever At has pdf

p (x, t). Furthermore, note that the finite dimensional distributions of the process Y t0 on Borel
sets B1, ..., Bk such that 0 /∈ B1, determine completely the finite dimensional distributions of the
process Y t0 . We demonstrate this for k = 2; if B2 is a Borel set then

P
(
Y t0t1 = 0, Y t0t2 ∈ B2

)
= P

(
Y t0t2 ∈ B2

)
− P

(
Y t0t1 ∈ R/{0}, Y t0t2 ∈ B2

)
,

which by (3.13) determines the two dimensional distributions completely.
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Remark 3. In [6], a result similar to Theorem 1 for the one dimensional distribution is obtained for
CTRW for large t0 and t. The proof in [6] sheds light on our result, as it was derived from showing
that the distribution of the first epoch τ1 of the aging CTRW Xt0

t has beta prime distribution, i.e
τ1 ∼ B′ (1− α, α, t0). This can be shown by a result by Dynkin on renewal processes ([9, Theorem
8.6.3]). Interestingly, the distribution of the first epoch τ1 does not scale out as we move to the
limit and obtain the process Y t0t . Indeed, one can show (similarly to the proof of Theorem 1) that
the distribution of the process Rt, the time left before the next regeneration at time t, is

(3.14) fRt (r) =
(
r
t

)−α (1 + r
t

)−1

t ·B [α, 1− α] r > 0.

Since it was noted in [25] that the process Yt starts afresh at time Ht = DEt = t depending only on
the position of Yt, and by the fact that in our case the process Yt is homogeneous in space, it follows
that once the process Y t0t leaves the state 0 it behaves like the process Yt from that point on. Now,
condition the probability P

(
Y t0t1 ∈ B1, Y

t0
t2 ∈ B2, ..., Y

t0
tk
∈ Bk

)
on the event {Rt0 = r}and integrate

with respect to r to obtain (3.7). It should be clear now why 0 /∈ B1 as we would like to make sure
that the system is mobilized before time t1.

Remark 4. Let Xt be a renewal process with interarrival times {Wi} whose tail distribution 1 −
F (x) ∈ R (−α) for 0 < α < 1, namely, there exists a slowly varying function L (x) such that
1 − F (x) ∼ x−αL (x) when x → ∞. Define the arrival times Tn =

∑n
i=1Wi and let St = t − TXt

be the age process, the time spent at the current state. It was shown in [9, Theorem 8.6.3] that the
distribution of Stt converges, as t→∞. The limit is the so called Generalized Beta of the first kind
distribution GB1 (1− α, α, 1) whose pdf equals fV1 , where

(3.15) fVt (v) =
(
v
t

)−α (1− v
t

)α−1

tB [α, 1− α] 0 < v < t.

In [25], the analogous process Vt = t −DEt− was defined to track the time that has passed since
the last regeneration of the process Yt. It can be easily shown, along similar lines to the proof of
Theorem 1, that the process Vt− has distribution GB1 (1− α, α, t). Equations 3.14 and 3.15 explain
the results of Jurlewicz et al in [14]. There it was proven ([14, Eq. 5.12]) that DEt has pdf

(3.16) g (r) = r−1

B [α, 1− α]

(
t

r − t

)α
r > t,

and that DEt− has pdf ([14, Eq. 5.9])

(3.17) h (v) = vα−1 (t− v)−α

B [α, 1− α] 0 < v < t.

Equation 3.16 and 3.17 can be obtained by 3.14 and 3.15 respectively, by translation and reflection.

4. Aging self similarity

Recall that a process Xt is called self-similar if for every a > 0 there exists b > 0 such that the
finite dimensional distributions of the time scaled process Xat equals that of the process bXt. It
is well known ([31, Section 13]) that if Xt is a Lévy process then it is self-similar if and only if
Xt is strictly stable, i.e for every a > 0 there exist b > 0 such that E

(
eiuX1

)a = E
(
eiubX1

)
. For

self-similar non trivial processes that are stochastically continuous at t = 0, b = aH ([10, Theorem
1.1.1]), where H > 0 if and only if Xt = 0 with probability one. H is sometimes called the Hurst
parameter. For example, for fractional Brownian motion 0 < H < 1 while the Hurst parameter
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of the stable subordinator of index 0 < α ≤ 2 is 1/α . For self-similar processes with stationary
increments and finite second moment the Hurst parameter (when it exists) determines long range
dependence ([10, Section 3.2]). Throughout this section we consider the process Y t0t = AEt+t0−AEt0
where At is a strictly stable process whose Hurst parameter we denote by 1/β and Et is the inverse
of a stable subordinator of index α. We wish to find whether Y t0t has the property of self-similarity
or a different property that resembles self-similarity to some extent. From Theorem 1 it is only
reasonable that any self-similarity-like property of Y t0t should be strongly connected to the self-
similarity of the process Yt.

The next corollary states that although the aging process Y t0t is not self-similar it exhibits a
self-similar-like behavior. Intuitively it suggests that Y t0at behaves like a “younger”(a > 1) scaled
version of itself.

Corollary 1. Let Y t0t be an aging process and let Bi for 1 ≤ i ≤ k be Borel sets in R. Then(
Y t0at1 , Y

t0
at2 , ..., Y

t0
atk

) d=
(
a
α
β Y

t0
a
t1 , a

α
β Y

t0
a
t2 , ..., a

α
β Y

t0
a
tk

)
.

Proof. For simplicity we only prove the result for k = 2 as the proof for k > 2 is similar. First
assume that B1 ⊆ R does not contain zero . By Theorem 1 we have

P
(
Y t0at1 ∈ B1, Y

t0
at2 ∈ B2

)
=

at1ˆ

0

P (Yat1−r ∈ B1, Yat2−r ∈ B2) pt0 (r) dr.

Apply the change of variables r′ = r
a to obtain

P
(
Y t0at1 ∈ B1, Y

t0
at2 ∈ B2

)
=

t1ˆ

0

P
(
Ya(t1−r′) ∈ B1, Ya(t2−r′) ∈ B2

) ( r′at0 )−α (1 + r′a
t0

)−1

t0 ·B [α, 1− α] adr′.

By [21, Corollary 4.1] Yt is self similar with Hurst parameter α
β . Therefore we have

P
(
Y t0at1 ∈ B1, Y

t0
at2 ∈ B2

)
=

t1ˆ

0

P
(
a
α
β Y(t1−r′) ∈ B1, a

α
β Y(t2−r′) ∈ B2

)
p t0
a

(r) dr(4.1)

= P

(
a
α
β Y

t0
a
t1 ∈ B1, a

α
β Y

t0
a
t2 ∈ B2

)
.

Now, by Remark 2 it follows that (4.1) holds for any Borel sets B1, B2 ⊆ R and the result follows. �

5. Asymptotic behavior and the Fractional Fokker-Planck equation

An easy yet important consequence of Theorem 1 is the following.

Corollary 2. Let B ⊆ R be a Borel measurable subset such that 0 /∈ B and P
(
Y t0t ∈ B

)
6= 0,

then

(5.1) P
(
Y t0t ∈ B

)
∼ Ctα−1

0 t0 →∞

where C = sin(πα)
π

tˆ

0

P (Yt−r ∈ B) r−αdr.
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Proof. First note that by the continuity of P (Yt ∈ B) (see (1)) C 6= 0 ⇔ P
(
Y t0t ∈ B

)
6= 0. By

dominated convergence we then have,

lim
t0→∞

P
(
Y t0t ∈ B

)
Ctα−1

0
= lim
t0→∞

tα−1
0

sin(πα)
π

tˆ

0

P (Yt−r ∈ B) r−α
(

1 + r
t0

)−1
dr

tα−1
0

sin(πα)
π

tˆ

0

P (Yt−r ∈ B) r−αdr

= 1.

�

Remark 5. When the process Yt is a renewal process (that is the case for the FPP) the convergence
of P

(
Y t0t ∈ B

)
to zero is expected by the Renewal Theorem ([12, XI.1]) and the fact that the

interarrival times have the Mittag-Leffer distribution with infinite expectation. Interestingly, it was
shown by Erickson in [11, Theorem 1], that if Yt is a renewal process with interarrival times Wn

with F (t) = P (W1 ≤ t) such that 1 − F (t) ∈ R (−α) for 0 < α < 1, i.e 1 − F (t) ∼ t−αL (t) as
t→∞ where L (t) is a slowly varying function and F is not arithmetic, then

(5.2) E
(
Y t0t
)
∼ sin (πα)

π

t

L (t0) t
α−1
0 t0 →∞.

We now show how (5.2) can be obtained for the FPP by Corollary 2. First note that by similar
arguments as in Corollary 2 we have

(5.3) E
(
Y t0t
)
∼ tα−1

0
sin (πα)

π

tˆ

0

E (Yt−r) r−αdr t0 →∞.

Let Yt = Nα
t be the fractional Poisson process with intensity λ = 1. By [8, Eq. 2.7], E (Yt−r) =

(t−r)α
Γ(1+α) and so by (5.3) we have

E
(
Y t0t
)
∼ tα−1

0
sin (πα)

π

tˆ

0

(t− r)α

Γ (1 + α)r
−αdr

= tα−1
0

sin (πα)
π

tΓ (1− α) .

To see this, note that
tˆ

0

(t− r)α r−αdr = Γ(1−α)
(α+1) ∂

α
t

[
tα+11t≥0

]
= Γ (1− α) Γ (α+ 1) t, where ∂αt

is the Caputo derivative of index α (5.8). This agrees with (5.2). Indeed, note that by [29] the
asymptotic behavior of the Mittag-Leffler distribution pdf is fα (t) ∼ t−1−αα

Γ(1−α) as t→∞ (note that
there is a typo there as α should be in the numerator) and by the Karamata Tauberian Theorem ([9,

Theorem 1.5.11]) we see that Eα (−tα) =
∞̂

t

f (y) dy ∼ t−α

Γ(1−α) as t→∞ so (L (t))−1 = Γ (1− α).

While it is known that generally CTRWL lose their stationarity property for 0 < α < 1 ([21,
Corollary 4.3]), Theorem 1 suggests a way of measuring the stationarity of a process in the class S.
The FPP for example has no stationary increments for 0 < α < 1, however, for α = 1 we obtain
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the Poisson process which is of course stationary as being a Levy process. We proceed with a useful
lemma that states that the distribution of the processes in S is continuous as a function of time.

Lemma 1. Let Yt ∈ S and C ⊂ R a Borel set, then the function t 7→ P (Yt ∈ C) is continuous on
(0,∞).

Proof. Since Yt = AEt , by a simple conditioning argument ([24, Eq. (2.7)]) we have

P (Yt ∈ C) =
∞̂

0

P (Ay ∈ C)h (y, t) dy,

where h (x, t) is the pdf of the process Et. Then

lim sup
h→0

|P (Yt+h ∈ C)− P (Yt ∈ C)| = lim sup
h→0

∣∣∣∣∣∣
∞̂

0

P (Ay ∈ C)h (y, t+ h) dy −
∞̂

0

P (Ay ∈ C)h (y, t) dy

∣∣∣∣∣∣
≤ lim sup

h→0

∞̂

0

|h (y, t+ h)− h (y, t)| dy.

It was proved in ([21, Corollary 3.1]) that

h (x, t) = t

α
x−1− 1

α g
(
tx−

1
α

)
where g (x) is the pdf of a stable r.v. Since g (x) is smooth it follows that h (x, t) is continuous on
t, x > 0 . Trivially we have

lim
h→0

∞̂

0

h (y, t+ h) dy =
∞̂

0

h (y, t) dy = 1.

Hence, a basic result in analysis [30, Chapter 7, Theorem 7] implies that

lim
h→0

∞̂

0

|h (y, t+ h)− h (y, t)| dy = 0,

and the result follows. �

The next result states that as α→ 1 the process Yt , in some sense, becomes more stationary.

Proposition 1. Let Yt ∈ S, then for every t, t0 > 0

Y t0t = Yt+t0 − Yt0
d→ Yt α→ 1.

Proof. In [33, eq. 3.1.19] it was shown that

(5.4) U (a, b, s) = 1
Γ (a)

∞̂

0

e−sxxa−1 (1 + x)b−a−1
dx,

where U (a, b, s) is a hypergeometric function that solves the confluent hypergeometric equation,
also known as Kummer’s equation

(5.5) s
∂2U

∂2s
+ (b− s) ∂U

∂s
− aU = 0.
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By (5.4) and a simple change of variables we find that the Laplace transform of the generalized
Beta prime distribution is given by

(5.6) p̂t0 (s) = U (1− α, 1− α, st0)
Γ (α) s > 0.

Using the identity U (1− α, 1− α, x) = exΓ (α, x) where Γ (α, x) is the incomplete gamma function

defined by Γ (α, x) =
∞̂

x

tα−1e−tdt , we can write (5.6) in a more familiar notation

p̂t0 (s) = est0Γ (α, st0)
Γ (α) .

Now, by dominated convergence

lim
α→1

p̂t0 (s) = lim
α→1

est0

∞̂

st0

rα−1e−rdr

Γ (α)

= est0e−st0

1 = 1.

Therefore, by [15, Theorem 4.3] we have pt0
w→ δ as α → 1 where w→ denotes weak convergence of

probability measures and δ is the Dirac delta measure. For a Borel set B such that 0 /∈ B define

f (r) =
{
P (Yt−r ∈ B) 0 ≤ r ≤ t

0 t < r
,

and note that P (Y0 ∈ dx) = δ0 (dx) and therefore P (Yt−r ∈ B) = 0 at r = t. Consequently, Lemma
1 suggests that f (r) is continuous. By the fact that

P
(
Y t0t ∈ B

)
=
∞̂

0

f (r) pt0 (r) dr

=
tˆ

0

P (Yt−r ∈ B) pt0 (r) dr → P (Yt ∈ B) ,

we also have P
(
Y t0t = 0

)
→ P (Yt = 0) and the proof is complete. �

Remark 6. It was shown in [33, eq. 4.1.12] that U (a, b, s) ∼ Cs−a as s→∞. It follows that

(5.7) p̂t0 (s) ∼ C (st0)α−1
t0 →∞

and therefore p̂t0 (s)→ 0 as t0 →∞. Hence, pt0
v→ 0 as t0 →∞ where v→ denotes vague convergence

of distributions, and P
(
Y t0t ∈ dx

) w→ δ0 (dx), another proof for the fact that P
(
Y t0t ∈ B

)
→ 0 as

t0 → ∞ for B such that 0 /∈ B. It is not hard to verify that p̂t0 → 0 as α → 0. Intuitively, this is
expected since a small α suggests long waiting times between jumps and that Yt is very subdiffusive.

Let p (dx, t) be a stochastic kernel, that is, for every t > 0 p (dx, t) is a probability measure
on σ (R) and for each Borel set B ⊆ R p (B, ·) is measureable. Denote the Fourier transform
of p (dx, t) by p̃ (k, t) =

´
R e
−ikxp (dx, t), and the Fourier-Laplace transform (FLT) by p (k, s) =
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´
R+

´
R e
−st−ikxp (dx, t) dt. Recall the definition of the Caputo 0 < α < 1 fractional derivative of a

function f (t),

(5.8) ∂αt f = 1
Γ (1− α)

tˆ

0

(t− r)−α ∂f (r)
∂r

dr.

For 0 < α < 1 the Laplace transform of ∂αt f is ([22, p. 39])

∂̂αt f = sαf̂ − sα−1f (0+) .

A closely related operator is the Riemann Liouville derivative Dαt for 0 < α < 1, which is defined
by

Dαt f = 1
Γ (1− α)

∂

∂t

tˆ

0

(t− r)−α f (r) dr.(5.9)

The LT of (5.9) can be shown to be D̂αt f = sαf̂ . It follows that

(5.10) ∂αt f = Dαt f − f (0+) t−α

Γ (1− α) .

The following is a short summary of results in [3]. Let V ω = L1
ω (R× R+) be the space of real

valued measurable functions on R× R+ such that

‖f‖ω =
∞̂

0

ˆ

Rd

e−ωt |f (x, t)| dxdt <∞,

for some ω > 0. V ω is a Banach space w.r to ‖·‖ω. If (At, Dt) is a Lévy process where Dt

is a subordinator and s.t E
(
e−ikAt−sDt

)
= etη(−k,s), then the distribution of (At, Dt) gives way

to a semi group of operators whose infinitesimal generator L′ satisfies L′f = η (−k, s) f (k, s)(for
ω ≤ s). In fact, f is in the domain of L′, D (L′), iff g (k, s) = η (−k, s) f (k, s) where g (k, s) is
the FLT of some g ∈ V ω. If the first and second order spatial weak derivatives as well as the
first order time weak derivative of f is in V ω then f ∈ D (L′). Let pt0 (dx, t) be the probability
measure of the process Y t0t , i.e. pt0 (dx, t) = P

(
Y t0t ∈ dx

)
. Suppose At has the symbol ψ (k) and

the infinitesimal generator L, and Dt is an independent standard stable subordinator. We then
have η (−k, s) = −sα + ψ (−k), and L′ = −Dαt + L (since f ∈ V ω, Lf should be understood as
f (·, t) ∈ D (A) for every t > 0). Note that by [4, Theorem 2.2] smooth functions on R are contained
in D (L). The FLT of p0 (dx, t) is well known([22, Eq. 4.43]) and given by

(5.11) p0 (k, s) = sα−1

−η (−k, s) = sα−1

sα − ψ (−k) ,

which in turn implies that

∂αt p
0 (dx, t) = Lp0 (dx, t)(5.12)
p0 (dx, 0) = δ0 (dx) .

Equation (5.12) describes the dynamics of p0 (dx, t) and therefore is called the Fractional Fokker
Planck Equation(FFPE) of p0 (dx, t). Suppose that the process Y t0t starts from the random point
X0 with density p (x) ∈ C∞c (R), that is, smooth with compact support and that X0 is independent
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of Y t0t . The distribution of Y t0t +X0 is C (x, t) =
ˆ

R

p (x− y) pt0 (dy, t) which is again smooth. The

next theorem obtains the governing equation of C (x, t).

Theorem 2. Let Yt = AEt have probability measure p0 (dx, t) whose FLT is given by (5.11) for
0 < α < 1. Let L be the generator of At. Then we have

∂αt C (x, t) = L

C (x, t)− p (x)
∞̂

t

pt0 (r) dr

(5.13)

C (x, 0) = p (x) .

Proof. Let

(5.14) p (x, t) = C (x, t)− p (x)
∞̂

t

pt0 (r) dr,

and note that the FLT of (5.14) is

(5.15) p (k, s) = C (k, s)− p̃ (k)
(

1
s
− 1
s
p̂t0 (s)

)
.

By Remark 2 we have

(5.16) p (x, t) =
ˆ

R

p (x− y)
tˆ

0

p0 (dy, t− r) pt0 (r) dr.

By a general version of Fubini’s Theorem [2, Theorem 2.6.4] we have

ˆ

R

e−ikx
tˆ

0

p0 (dx, t− r) pt0 (r) dr =
tˆ

0

p̃0 (k, t− r) pt0 (r) dr.(5.17)

Take the LT of both sides of equation (5.17) to obtain

ˆ

R+

ˆ

R

e−st−ikx
tˆ

0

p0 (dx, t− r) pt0 (r) dr = p0 (k, s) p̂t0 (s) .

It follows that
p (k, s) = p0 (k, s) p̂t0 (s) p̃ (k)

Since by (5.11) p0 (k, s) = sα−1

sα−ψ(−k) we have

(5.18) p (k, s) = sα−1

sα − ψ (−k) p̂t0 (s) p̃ (k) .

Substitute (5.15) in (5.18) to obtain

C (k, s) sα − C (k, s)ψ (−k)− p̃ (k)
(

1
s
− 1
s
p̂t0

)
sα + p̃ (k)

(
1
s
− 1
s
p̂t0

)
ψ (−k) = sα−1p̂t0 (s) p̃ (k) ,
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which can be rearranged to obtain

(5.19) C (k, s) (sα − ψ (−k)) = p̃ (k) sα−1 −
(

1
s
− 1
s
p̂t0

)
p̃ (k)ψ (−k) .

By the preceding discussion the right hand side of 5.19 inverts to a function in V ω, taking the IFLT
of (5.19) we have

(5.20) Dαt C (x, t)− LC (x, t) = p (x) t−α

Γ (1− α) − Lp (x)
∞̂

t

pt0 (r) dr.

Noting that C (x, 0+) = p (x) one can rewrite (5.20) by using (5.10) to arrive at (5.13). �

Remark 7. Although Equation (5.13) is not an abstract Cauchy problem, one may adopt the concept
of a mild solution from [27, Chapter 4] and use it in our case. Let f ∈ L1 (R), we say that a function

C (x, t) = f ∗ pt0 (dx, t) =
ˆ

R

f (x− y) pt0 (dy, t) is a mild solution of

∂αt C (x, t) = L

C (x, t)− f (x)
∞̂

t

pt0 (r) dr

(5.21)

C (x, 0) = f (x)

if there exists a sequence φn ∈ D (L) s.t φn
L1

→ f (this implies that φn ∗ pt0 (dx, t) L
1

→ f ∗ pt0 (dx, t)
uniformly in t on bounded sets as pt0 (dx, t) is a contraction for every t). From Theorem 2 and the
fact that C∞c (R) is dense in L1 (R), we conclude that every f ∈ L1 (R) is a mild solution of (5.21).
We then write for simplicity

∂αt p
t0 (dx, t) = L

pt0 (dx, t)− δ0 (dx)
∞̂

t

pt0 (r) dr

(5.22)

pt0 (dx, 0) = δ0 (dx) .

Since (5.22) describes the dynamics of the probability kernel pt0 (dx, t) we call it its FFPE.

Remark 8. Theorem 2 shows that the dynamics of pt0 (dx, t) are the same as those of p0 (dx, t)
on R/{0} × [0,∞). There is a nice intuitive interpretation to equation (5.22) when At is a stable
process. Equation (5.13) can be explained as the behavior of a plume of particles by arguments of
conservation of mass and Fick’s law ([22, Remark 2.3] and [37, Section 16.1]). However, note that
the portion of the mass of particles that does not diffuse away from point x = 0 at time t (and

therefore does not contribute to the change in pt0 (dx, t) over time) is
∞̂

t

pt0 (r) dr by Remark 2 and

the fact that stable processes have pdf. This accounts for the difference between (5.22) and (5.12).

Remark 9. In [5], a deterministic system was modeled by a CTRW and its aging properties were
studied. There, the FFPE was given for the unnormalized distribution (5.14) of the aging process
when t0 and t are large. To see that the results agree, simply plug ψ (−k) = −k2

2A in (5.18) and
take the IFLT of both sides of the equation. Since p (k, s) sα is the FLT of the fractional Riemann-
Liouville α derivative we obtain [5, eq. 18].
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