FINITE DIMENSIONAL FOKKER-PLANCK EQUATIONS FOR UNCOUPLED
CONTINUOUS TIME RANDOM WALK LIMITS

ABsTrRACT. Continuous Time Random Walk(CTRW) is a model where particle’s jumps in space
are coupled with waiting times before each jump. A Continuous Time Random Walk Limit(CTRWL)
is obtained by a limit procedure on a CTRW and can be used to model anomalous diffusion. The
distribution p (dz,t) of a CTRWL X satisfies a Fractional Fokker-Planck Equation(FFPE). Since
CTRWLs are usually not Markovian, their one dimensional FFPE is not enough to completely
define them. In this paper we find the FFPEs of the distribution of X; at multiple times , i.e. the
distribution of the random vector (X¢,,..., Xy, ) for t1 < ... < t, for a large class of CTRWLs.
This allows us to define CTRWLs by their finite dimensional FFPEs.

1. INTRODUCTION

CTRW models the movement of a particle in space, where the k’th jump Ji of the particle in
space is preceded by the k’th waiting time Wy. We let N; = sup {k : T}, < t} where T}, = Zle W,
,if Ty >t then N; = 0. V; is just the number of jumps of the particle up to time ¢. Then

N,
Xi= Z /s
k=1

is the CTRW associated with the time-space jumps {(Jx, W)}, cn. Let us now assume that {J.}
and {W}} are independent i.i.d sequences of random variables. In order to model the long time
behavior of the CTRW we write {(Jg, W)}, oy for ¢ > 0. Here the purpose of ¢ is to render
the trajectories of {(J, W)}, oy convergent weakly on a proper space. More precisely, we let
D ([0, oo),R2) be the space of cadlag functions f : [0,00) — R? equipped with the Skorokhod J;
topology. We assume that

[cu]
(Se.Tg) = (JE, W) = (Au, Du) ¢ — o,
k=1
where = denotes weak convergence of measures with respect to the J; topology. We further
assume that the processes A; and D, are independent Lévy processes and that D, is a strictly
increasing subordinator. Denote by X the CTRW associated with {(Jg, W)}, .. We then have
([12, Theorem 3.6] and [11, Lemma 2.4.5])

(1.1) X; =X, =Ag, ¢ — 00,

where E; = inf{s : D; > t} is the inverse of D; and = means weak convergence on D ([0, c0), R)
equipped with the J; topology. It is well known that X, is usually not Markovian, a fact that
makes the task of finding basic properties of X; nontrivial. One such task is finding the finite
dimensional distributions of the process Xy, i.e. P (X, € dx1,...,X:, € dxy). In [8], Meerschaert
and Straka used a semi-Markov approach to find the finite dimensional distributions for a large
class of CTRWL. It turns out that the discrete regeneration times of X; converge to a set of points
where X; is renewed. Once we know the next time of regeneration of X;, we no longer need older
1
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observations in order to determine the future behavior of X;. More mathematically, denote by
R; = Dg, —t the next time for regeneration of X; then (X3, R;) is a Markov process. One can then
use the transition probabilities of (X;, R;) along with the Chapman-Kolmogorov’s equation in order
to find P (X, € dx1,..., Xy, € dxy,) for t; < ... < ¢, and n € N. This method was used in [4] in
order to find the finite dimensional distribution of the aged process Xtt“ = X;—Xy,. It is well known
([7, Section 4.5]) that the one dimensional distribution p (dz,t) = P (X, € dx) satisfies a FFPE.
Once again, as X; is non Markovian the FFPE satisfied by p (dz,t) is not enough to fully describe
X, (as it would if X; were Markovian). Hence, a dual problem to finding the finite dimensional
distributions is that of finding the finite dimensional FFPEs of the finite dimensional distributions
of X;. In this paper we obtain the finite dimensional FFPEs for a large class of CTRWL. The
results generalize the well known one dimensional FFPE of CTRW([6]) as well as results in the
finite dimensional case([1],[2]).

2. MATHEMATICAL BACKGROUND

2.1. Notations. A well known method of solving partial differential equations of distributions
p(dxy,...,dxp;t, ..., ty) on R™ is taking the Fourier Transform (FT) of the distribution with respect
to the spatial variables and then the Laplace Transform (LT) with respect to the time variables. This
is referred to as the Fourier Laplace Transform(FLT) of p (dz1, ..., dxy,;t1, ..., t,). More generally,
for m,n € Nlet f(dzq,...,dxm;t1, ..., t,) be a finite measure on R™ for a fixed t = (¢1,...,t,) where

0<t <---<t,. Moreover, let / f(dxy,...;dxm;t, ..., t,) be measurable as a function of t for

x€A
each A C R™. We denote the FT of f by

f(kla"'akM7 1, / / 77‘2;1]61 f(dxlv"vdxm;tlv"'vtn)'
r1€ER Tm E€R
When f has density f(x1,..., Zm;t1, ..., t,) we denote the LT of f by
f(xla"'azm;317"~7 / / T X sils f(xly" :Emv 7atn)dt1dtn
1=0 tn=0

The FLT of f is

f(dxlv~-~7dxm;317"~75n / / / / — 2 ie (kiwitsity )f(dxl, dmmy 7’tn)dt1dtn

1=0 tn,=0x, €ER z, ER

We also denote by f the FT of f with respect to some of its spatial variables, therefore, f (dxq, ko, ta)
is the FT of f w.r.t zo. Similarly, f (dz1,dzo;s1,t2) is the LT of f w.r.t ¢; and f (k1, dwo; s1,ts) is
the FLT of f w.r.t x; and ¢;. When using the hat symbol is cumbersome we also use f = £ (f).

2.2. Caputo and Riemann-Liouville Fractional Derivatives. The Riemann-Liouville(RL)
fractional derivative of index 0 < v < 1 is given by

(2.1) ]D)to‘f()— 1_a/t—r (r)dr,
0
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for a suitable function f defined on R;. When the variable with respect to which we take the
derivative is obvious we drop the subscript and just write D*f (). It can be easily verified that the
LT of (2.1) is

— ~

D (s) = s°F (s).

Hence, the RL derivative is a pseudo-differential operator of symbol s*. Caputo’s derivative is
obtained by moving the derivative in (2.1) under the integral to obtain

(2.2) D0F (t) = ﬁ/ (t—r)° %f(r) dr.
0

The LT of (2.2) is
ijx\f (s) = so‘f(s) —s*7f(0h).

We denote the classic derivative by £ = D!, and note that D' = D' iff f(0*) = 0. For simplicity

we drop the superscript and write % = D(or % = D when that is the case).

2.3. On some pseudo-differential operators. Here we investigate the pseudo-differential op-
erators(PDO) acting on functions f (t) that are differentiable on C' = {t: 0 < t; <t3 < ... < t,}
with support C = {t:0 <t <ty <..<t,} with LT f and s.t tlim f(t) = 0. Let us begin by

n—>00
considering D¢ f (t) = >0, (%f (t).

Lemma 1. Let f be as above. Then the LT of D¢ f (t) is

—

(2.3) Def (t) = (Z sn> f(sl, .o 8y) — lim f(.’]:l,Sg, ey Sn) -

$1—>0+
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Proof. In the following, we use a; to indicate that a; is absent from where it normally should be.
For 1 <7 < n we have

(2.4)

oo oo

i of (¢
/ / e / e St sata =St %dhdtz e dty,

t1=0t2=0 tn—O
e s] 0 9
; t .
/ —sit1-—Siti —Sntn / e Siti 'Z;t( )dti dty---dt;---dt,

oo

/ %
=0

[ee]

=0

t1 t; =0

781151 i"'*sntn efsitif(t) (tlv ti—1,tit1,tig,.. 7tn)
(t1seestim1,tim1,tig1,ntn)

'\au":\g

ty ti= tn=0

—I—Si/e_s"’tif(thtg,...,tn)dti dtld%ldtn

t;=0
—91t1"'—3{ tir—Sptn —Sz:ti+1f t t: t: ts t
€ 15 bi—1, i+1 ybi41-e5ln
~—~
t1=0 ti= tn,=0 i’th coordinate
oo
—siti— —sit; 7
—e ° lf t1...,ti—1, ti_1 yUig1esbn | + 8i / e’ f(t1,t2,...,tn) dt; | dty---dt;---dt,
~—~
i’th coordinate t;=0
(2.5)
o0
— g t; A
= / em(itstion f g s n tign bt Sig2en Sn | i
~—~

ti+1=0 i’th coordinate

(2.6)
oo
—(s;+8;i_1)ti_1 P P
- emitsilion fligy U tia, s Sty Sicoen S | dbin + 8if (51,852,000 80)
~—
t;—1=0 i’th coordinate
Note that since lim f (¢1,...,t,) = 0, summing over the variable ¢ the first two terms in the last
tp—00

equation in 2.4 cancel out for every i # 1. For ¢ = 1 only the second term in the brackets cancels
out and the result follows. O

Dy is just the directional derivative along the vector v = (1,...,1). Let ¥, be a PDO on R
with symbol ¢ (k). Then ¢(}"7_, k;) is a symbol of the PDO ¥, where we use bold x subscript to
emphasize the fact that ¥y is defined on functions(measures) on R™. One can think of Uy as the
directional version of ¥, with directional vector v = (1, ..., 1).

Define the RL fractional derivative of index 0 < a < 1 of f (t) to be

"H t roo
(2_7) Dg‘f: (Z 8t> /f (L‘1 —r, i —T,...,tn—T) mdr-
i=1 """/
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Equation (2.7) can be thought of as a fractional directional derivative.
Lemma 2. The LT of D°f is (31 s,)" ]?(51, ... 8p)-

Proof. A simple computation shows that

/f (t1 —ryto — 1.ty )F(Z__aa)dr = (ZSZ> f(sh...sn).

=1

It follows by Lemma 1 that
n t1
]]i“\f:.f Zi /f(tlfrtng...tnf’)")L an sl...sn).
L~ O, ’ Y I'(l—«) ’
0
O

2.4. The Semi-Markov Approach. Since the process X; = Ag, is not Markovian, knowing its
one dimensional distribution in not enough to construct its finite dimensional distributions. To
circumvent this problem Meerschaert and Straka ([9]) constructed the Markov process (Xi, R:),
where R; = Dp, — t is the time for regeneration of the process X;. Let Q: (2',r’;dx,dr) be the
transition probability of the process (X;, R;) and 0 < ¢; < ty < ... < t,, for some n € N. Then

P (X, € dxy, Xy, € dag, ..., Xy, € dxy,)

/ / /Qt] (0,0;dxq,dry)

r1=0re= 77, =0
XQty—t, ($17 T1; dx2, d7"2) Qb =ty (xtn_lartn_l;dxna dTn)

= Qu, (0,05dx1,dr1) 0 Quy—iy (x1,m13d22,dra) - Quy—tr o (Ter 1, T,y AT, dry) ©

Here7 Qt (.’17/77‘/; da?,dT)Of (.’17,7") = /f (,CC,’I") Qt (wlvrl; d,ﬁC,dT) a“nd Qt (wlvrl; d,ﬁC,dT) o= /Qt (‘/L'/arl; d(E,dT).
r=0 r=0

In [9], the expression for @ is gi:/en for a large class of processes. Here, however, unless stated
otherwise we consider processes of the form X, = Ag,, where A; is a Lévy process and E; is the
inverse of a strictly increasing subordinator D, that is independent of A;. That is,

E,=inf{s>0:Ds; >1t}.

More precisely, the characteristic function of A; and the Laplace transform of D, are given respec-
tively by

, 1 .
(2.8) E (e“‘At) =exp |t | ibu — §au2 + / (€™ — 1 —iuylyy<1y) K1 (dy)
R

E (e_SDt) =exp |t / (e — 1) K3 (dy)

+
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Here, a > 0,b € R. K; is a Lévy measure while K5 is a measure whose support is [0, 00) and
satisfies [ (y A1) Ks (dy) < oo, K3 ({0}) =0 and [ K> (dy) = co. By (2.8) it can be easily verified
that the infinitesimal generator A of the process (A, Dy) is

0 a 02
(2:9) AU @) =bon (et + 55 (1)

of(x,t)
ox

+/(fu+y¢+w»<ﬂaw—y

R2

1{|(y,w>|<1}> K (dy, dw),

where K is again a Lévy measure. In [9], the case where the coefficients b and a as well as the
measure K may be dependent on (z,t) is considered. However, when they do not(this is referred
to as the homogeneous case), the transition probability @ is given by ([9, Equation. 4.4])

Qt (x/, r’; dx, dr) = 1{0<t<7"}50 (d(E — .T/) Op/—t (dr) + I{OST’St} Qtfr’ ({E/, 0; dx, dT‘)

(2.10) Q: (2/,0;dx, dr) = / / U (dy, dw) K (dx — y,dr +t —w),

yERwe[0,t]

where U?' (dy, dw) is the occupation measure of (A, D;), i.e

/f (y,w) U (dy,dw) =E /f (A, +2',Dy,) du
0

When the processes A; and D, are independent, it can be easily verified that

(2.11) U* (dy, dw) = /z (dy — 2’ u) g (dw, u) du,
0

where z (dz,t) = P (A; € dz) and g (dz,t) = P (D, € dzx). Moreover, in the case of independence
it was shown that ([3, Corollary 2.3])

K (dy, dw) = K (dy) 8o (dw) + 8 (dy) K» (dw) .

Hence, equations (2.10) translate into

Q¢ (2!, r'sda,dr) = 1jo<i<ry 00 (do — ") 60—y (dr)

+ Lo<r<ty / / /Z (dy —2',u) g (dw,u) du

yERwe(0,t—7r'] 0
(2.12) X (0 (dr +t — 1" —w) Ky (dz —y) + 6o (dx — y) Ko (dr +t — ' — w)).
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However, since [ K (dy) = oo, we see (|10, Theorem. 27.4]) that g (dw, t) has no atoms. Therefore,
(2.12) reduces to

Q¢ (', r'sda,dr) = 1{g<s<ry00 (dx — &) 604 (dr)

oo

(2.13) + o< <t} / /z (dx — 2’ u) g (w,u) du

we(0,t—r'] 0
x Ky (dr +t — 71" —w) dw.

3. FOKKER-PLANCK EQUATIONS

Throughout this section, we let A; be a Lévy process such that F (e““Af) = ¢t¥ (¥ its probability
density is given by z(dx,t) = P(A; € dx). E; is the inverse of a subordinator D, such that
E (e7sPt) = et(9) its probability density is h(dz,t) = P (E; € dr). We denote by ¥ and @
the pseudo-differential operators of the symbols ¢ (—k) and —¢ (s) respectively. We also denote
the transition probability function of the Markov process (X, R:) by Q: and that of (E, R;) by
H,. Next note that the occupation measure of (¢, E) is just U*" (dz, dw) = g (dw,z — z') dz, and
similarly to (2.13) we have

Hy (2,7 dx, dr) = Lio<i<ry00 (do — @) 6 —y (dr)
+ Ljo<r<ty / g (dw,x —x')dr x Ko (dr +t — 1" — w) dr.
we(0,t—r']

Theorem 1. Suppose the measure Ko has a continuous density ko. Let h (dxq, ...,dxn;ty, ..., t,) be
the finite dimensional distribution of E; where t1 <ty < ... < t,, i.e

h(dzy,...;dzp;ty, ... ty) = P(Ey € dxy,..., By, € dxy,).
Then
(31) (I)th (da?l, ceny d.’l?n; tl, 7tn> == —th (dl‘h ceey d.’L‘n; t17 7tn) .

Proof. Let us take LT with respect to the spatial variables and with respect to the time variables,
this will be abbreviated by LLT. Before taking the LLT of h (dx1, ..., dxy;t1, ..., t,) we note that
since Hy (¢/,7’;dx, dr) is translation invariant with respect to the spatial variable we have

h(dzy,...;dz,;t1, .. ty)
(3.2) =H; (0,0;x1,dr1) o Hyy—t, (0,71520 —x1,dre) - Hy, —y, , (0,70-1;Zp — Tp—1,drp) 0.

Taking the LLT of (3.2), by a simple change of variables we see that
h(AL, o A S1,---80)
(3_3) — / / 67(2?:1 Si)tlf(Z?:l )\i)ZEl Htl (0, 0; d:El, dT1) odty

t1=0x:=0

te Hsn,—i-sn,l (07 715 kn + kn—la dTn—l) o I'Isn (O, Tn—1; knv dTn) o.
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Now, let us look at

(o) oo
/ / e~ (Bias )= (SN g, (0,0;day, dry) dty

t] _01'1 =0
oo

/ / 1= (5 i) / g (dw, z1) dzq
=0z, = we[0,t1]
X ko (r1 +t1 _w>drl

oo

_ /e—( EPHES / g (dw, 1) das

z1=0 we[0,00]

o0

X e~ (Zim Si)tlkg (r1+t —w)dr

= / e—(Z?:l /\i)wl / g (dw, a:l) d$16_(2?=1 S'i)w

z1=0 we[0,00]

X /6_(22;1 Si)tlkg (T1 +t1)d’l‘1

t1=0
oo
(34) T / e tl ko (7“1 + tl) dry.
D1 Ai —
t1:0
Next note that,
(3.5)
lim A (21, Ao,... A\n;S1,...50)
361—}0
= lim 67(21 v86) = (s M) / (dw, 1) / (r1 +t1 —w)dry
w1~>0+
t1=0 we[0,t1] 1=0

X HZ:LZQ S (07T1; Z )‘ivdT2> SI Hsn+sn_1 (07Tn72; An + )\nflad'r’nfl) o Hsn (0; Tn—1; )\nvdrn) o.

(oo} oo

= /ei(zyzlsi)tl/kg (7"1 +t1)d7"1

t1=0 7"1=0

X sz; Sq (0 rlaz)‘udr2> o s,,+s77 1 (O Tn— 27)\ +)\n 1,d7”'2) OHS,, (0 Tn— 17>\n7dr71)
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since g (dw, 1) converges weakly to do (dw) as 1 — 07 and ks is continuous. Finally, plugging
(3.4) in (3.3), using (3.5) and rearranging terms we arrive at
(3.6)

—¢ <Zsl> (Ayoe o An;S1,---Sn (ZA) )\1,...)\n;sh...sn)—i-ﬁ(()"’,)\g,...)\n;sl,...sn).

Taking the inverse LLT of (3.6) and using Lemma 1 we obtain (3.1). O

Theorem 1 paves the way for the finite dimensional FFPEs of the process X;.

Corollary 1. Let p (dzy,...,dxn;t1, ..., tn) = P(Xt, € dx1,...,Xt, € dxy,). Then
Oip (day, ..., dzp;ty, o tn) = Usp (day, .y dzpity, oy ty)

(3.7) / / o (dz1) z d:cg,...,dxn;uQ,...,un)h(0+,duQ,...,dun;tl,...,tn)

Up=Up—1

Proof. By the independence of A; and Dy

(3.8)

p(dxy, ..y dxp;ty, .y ty)

/ / / (dxy, .oy dxp;uy, coyun) h(dug, ... dup;ty, ... ty)

w1 =0uz2=u1 Up=Un—1
/ / (dx1,u1) z (dee — x1,u9 —uy) -+ 2 (T — Tp—1, U — Up—1) b (dug, ... dup;ty, ... ts) .
u1=0 Un=Un—1

Taking the FLT of p(day,...,dzy;t, ..., t,) and applying the change of variables ub = ug — uy we
obtain

ﬁ(kl,...,kn;sl,...,sn)
= / / / e~ (Ciysi)ti—(i20 ki)on z (dx1,u1) Hy, (0,0;duy,dry) o dt1dxy

u1=0t; =0z, €R

></ / (Z/%m) Z (ks un — tn—1) Hyn o, (0,715 dug —uy,dra) o -+ Hy, (0,715 duy, dry,) o

uz=0 Unp=Un—1
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Let us look at

/ / / 67(2?’:15i)t17(iz7 1 ) (d:cl,ul)Htl (0 0; dul,drl)dtl

u1=0t;=0x; ER

u1=0t;=0x,€R

X / g (dw,uy) durks (r1 +t1 — w) dridty

we(0,t1]

/// Jor= (B2 2)v 2 (day, 1) g (dw, ur) duy

u1=0w=0x, €R

X / e (Bas)tig, (ry + t1) dridty

t1=0
— 1 [ —(Xizisi )t
(3.10) RESTTE L Si)tloe ( ks (ry +t1) dry.

Plugging (3.10) in (3.9) and using (3.5) we have
1
= (=il ki) — o (i s0)

X / / Z(Zki,@)---E(kn,un—un_l)ﬁ(O+,duQ,...,dun;sl,...,sn).

uz2=0 Up =Un —1

p(kl, ceny kn; S1yeeey Sn) =

Rearranging and taking the inverse FLT we arrive at (3.7). O

Working along similar lines to the proof of Theorem 1 one can also obtain the finite dimen-
sional FFPEs of the process X; = Ap, where E, is the inverse of a strictly increasing subordi-
nator D; and (A, D;) is a Lévy process, i.e. the processes A; and D; are not necessarily in-
dependent. More precisely, suppose E (eikAf_SDt) = e®€(5) and that & (k,s) = ibk — %akz +

/ (eRv=sw — 1 — ikyly(yw)<1}) K (dy,dw) and that = is the operator whose symbol is —¢ (—k, s).
R
Corollary 2. Let (A, D;) be a Lévy process s.t E (eikAt’SDt) = ¢'€(k9) | Let E, be the inverse of the

strictly increasing subordinator Dy and let p (dxy, ..., dxy;t1, ... ty) = P (Xy, € dxq,..., Xy, € dxy,).
Then

(3.11)

Ex,tp (d.’l?l, ...,dxn;tl, ...,tn) = / K(dxl,drl + t1)
T1:0

(3-12) X Qtrtl (96177°1; dzx>, d7“2) - Qt,ﬁtn,l (xnfla Trn—1;dTp, drn) o
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Proof. Using (2.10) we see that @) is again translation invariant with respect to the spatial variable.
Note that here

o0

U* (dy, dw) = /v (dy, dw; u) du,
0

where v (dy, dw;u) = P (A, € dy, D,, € dw). Using the same ideas as in the proof of Theorem 1 we
obtain

%) ) [es) t1
D(k1y ooy kn; 1500y Sn) = / / e~ (Tl si)ti— /v (dy, dw;u) du / / /K(dml —y,dry +t1 —w)
t1=0x, €R u=0 r1=0yeRw=0
X QZ?:2 S; <O,dT1;Zki,d7“2> S 'an (Ozrnfﬁk’rudrn)o
=2
/ / 2?21 kl)y / v (dy’ dw; u) du / / / e*(Z?:l Si)tlf(ZLl ki)asl
yERw= u=0 r1=0t1=0x1 €R

x K (dl’l, drl + tl) QZ:‘:2 S; (07 d’l“l; Z ki; d?"g) SRR Qs" (07 Tn—1, k’ru drn) o

=2
Lsi)ti— (X0, ki)IlK(dlj dri +t1)
( Zz lk’LaZz 18 / / /
r1=0t1=0x1 €R

X QE:‘: (0 drlazkudr2> Qs,, 0 Tn— 17kn7drn)

Rearrange and invert to obtain (3.11). O

4. EXAMPLES

Theorem 1 as well as Corollary 1 and Corollary 2 should be compared with their one-dimensional
counterparts to gain a better understanding of the dynamics of the processes whose distributions
govern those equations. We start with a specific case of the one dimensional analogue of Theorem
1.

Example 1. Let D; be a standard stable subordinator of index 0 < o < 1,i.e. E (e’SDf) = et(=5%),
Its inverse E; has a distribution h (z,t) which satisfies ( |8, Equation 5.5|)

DA (2, t) = =Dyh (z,t),
on z,t > 0. Since here ¢ (s) = —s*, we see that &, = Df .

Next we look at the one dimensional analogue of Corollary 1.

Example 2. Again we let D; be a standard stable subordinator of index 0 < o < 1, and A; be a
Lévy process s.t E (e'*41) = e"(¥) Then the distribution p (dz,t) of Ap, satisfies ( [3, Equation
5.6])

tfa

(41) ]D)?p (d.’t,t) = \I/mp (dl’,t) + m
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To see why (3.7) can be thought of as a generalization of (4.1) note that h (07, ¢) =
Equation 4.3]) and rewrite (4.1) as

Op(z,t) = Wup (2,t) 4 0o (dz) b (0T, 1) .

Our last example concerns the one dimensional analogue of Corollary 2.

wizay (15

Example 3. Let (A, D;) be a Lévy process as in Corollary 2. Then its one dimensional distribution
p(dz,t) satisfies

(4.2) Epp (dz,t) = /K (dz,dr +1t).
r=0
This was shown in [5, Theorem 4.1].

Remark 1. In [1, Equation 5.9] Buale and Friedrich essentially obtained Equation 3.1 for the case
where D; is a standard stable subordinator. In [2, Equation 14] Bauale and Friedrich obtained
Equation 3.7(uncoupled case) for the two dimensional case.
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