
FINITE DIMENSIONAL FOKKER-PLANCK EQUATIONS FOR UNCOUPLED

CONTINUOUS TIME RANDOM WALK LIMITS

Abstract. Continuous Time Random Walk(CTRW) is a model where particle's jumps in space
are coupled with waiting times before each jump. A Continuous Time RandomWalk Limit(CTRWL)
is obtained by a limit procedure on a CTRW and can be used to model anomalous di�usion. The
distribution p (dx, t) of a CTRWL Xt satis�es a Fractional Fokker-Planck Equation(FFPE). Since
CTRWLs are usually not Markovian, their one dimensional FFPE is not enough to completely
de�ne them. In this paper we �nd the FFPEs of the distribution of Xt at multiple times , i.e. the
distribution of the random vector (Xt1 , ..., Xtn ) for t1 < ... < tn for a large class of CTRWLs.
This allows us to de�ne CTRWLs by their �nite dimensional FFPEs.

1. Introduction

CTRW models the movement of a particle in space, where the k'th jump Jk of the particle in

space is preceded by the k'th waiting time Wk. We let Nt = sup {k : Tk ≤ t} where Tk =
∑k
i=1Wi

, if T1 > t then Nt = 0. Nt is just the number of jumps of the particle up to time t. Then

X ′t =

Nt∑
k=1

Jk,

is the CTRW associated with the time-space jumps {(Jk,Wk)}k∈N. Let us now assume that {Jk}
and {Wk} are independent i.i.d sequences of random variables. In order to model the long time
behavior of the CTRW we write {(Jck,W c

k )}k∈N for c > 0. Here the purpose of c is to render
the trajectories of {(Jck,W c

k )}k∈N convergent weakly on a proper space. More precisely, we let

D
(
[0,∞),R2

)
be the space of cádlág functions f : [0,∞) → R2 equipped with the Skorokhod J1

topology. We assume that

(Scu, T
c
u) =

bcuc∑
k=1

(Jck,W
c
k )⇒ (Au, Du) c→∞,

where ⇒ denotes weak convergence of measures with respect to the J1 topology. We further
assume that the processes At and Dt are independent Lévy processes and that Dt is a strictly
increasing subordinator. Denote by Xc

t the CTRW associated with {(Jck,W c
k )}k∈N. We then have

([12, Theorem 3.6] and [11, Lemma 2.4.5])

(1.1) Xc
t ⇒ Xt = AEt c→∞,

where Et = inf{s : Ds > t} is the inverse of Dt and ⇒ means weak convergence on D ([0,∞),R)
equipped with the J1 topology. It is well known that Xt is usually not Markovian, a fact that
makes the task of �nding basic properties of Xt nontrivial. One such task is �nding the �nite
dimensional distributions of the process Xt, i.e. P (Xt1 ∈ dx1, ..., Xtn ∈ dxn). In [8], Meerschaert
and Straka used a semi-Markov approach to �nd the �nite dimensional distributions for a large
class of CTRWL. It turns out that the discrete regeneration times of Xc

t converge to a set of points
where Xt is renewed. Once we know the next time of regeneration of Xt, we no longer need older

1
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observations in order to determine the future behavior of Xt. More mathematically, denote by
Rt = DEt − t the next time for regeneration of Xt then (Xt, Rt) is a Markov process. One can then
use the transition probabilities of (Xt, Rt) along with the Chapman-Kolmogorov's equation in order
to �nd P (Xt1 ∈ dx1, ..., Xtn ∈ dxn) for t1 < ... < tn and n ∈ N. This method was used in [4] in
order to �nd the �nite dimensional distribution of the aged process Xt0

t = Xt−Xt0 . It is well known
([7, Section 4.5]) that the one dimensional distribution p (dx, t) = P (Xt ∈ dx) satis�es a FFPE.
Once again, as Xt is non Markovian the FFPE satis�ed by p (dx, t) is not enough to fully describe
Xt(as it would if Xt were Markovian). Hence, a dual problem to �nding the �nite dimensional
distributions is that of �nding the �nite dimensional FFPEs of the �nite dimensional distributions
of Xt. In this paper we obtain the �nite dimensional FFPEs for a large class of CTRWL. The
results generalize the well known one dimensional FFPE of CTRW([6]) as well as results in the
�nite dimensional case([1],[2]).

2. Mathematical Background

2.1. Notations. A well known method of solving partial di�erential equations of distributions
p (dx1, ..., dxn; t1, ..., tn) on Rn is taking the Fourier Transform(FT) of the distribution with respect
to the spatial variables and then the Laplace Transform(LT) with respect to the time variables. This
is referred to as the Fourier Laplace Transform(FLT) of p (dx1, ..., dxn; t1, ..., tn). More generally,
for m,n ∈ N let f(dx1, ..., dxm; t1, ..., tn) be a �nite measure on Rm for a �xed t = (t1, ..., tn) where

0 < t1 < · · · < tn. Moreover, let

ˆ

x∈A

f (dx1, ..., dxm; t1, ..., tn) be measurable as a function of t for

each A ⊂ Rm. We denote the FT of f by

f̃ (k1, ..., km; t1, ..., tn) =

ˆ

x1∈R

· · ·
ˆ

xm∈R

e−i
∑m
i=1 kixif (dx1, ..., dxm; t1, ..., tn) .

When f has density f (x1, ..., xm; t1, ..., tn) we denote the LT of f by

f̂ (x1, ..., xm; s1, ..., sn) =

∞̂

t1=0

· · ·
∞̂

tn=0

e−
∑n
i=1 sitif (x1, ..., xm; t1, ..., tn) dt1 · · · dtn.

The FLT of f is

f̄ (dx1, ..., dxm; s1, ..., sn) =

∞̂

t1=0

· · ·
∞̂

tn=0

ˆ

x1∈R

· · ·
ˆ

xn∈R

e−
∑n
i=1(ikixi+siti)f (dx1, ..., dxm; t1, ..., tn) dt1 · · · dtn.

We also denote by f̃ the FT of f with respect to some of its spatial variables, therefore, f̃ (dx1, k2; t1, t2)

is the FT of f w.r.t x2. Similarly, f̂ (dx1, dx2; s1, t2) is the LT of f w.r.t t1 and f̄ (k1, dx2; s1, t2) is

the FLT of f w.r.t x1 and t1. When using the hat symbol is cumbersome we also use f̂ = L (f).

2.2. Caputo and Riemann-Liouville Fractional Derivatives. The Riemann-Liouville(RL)
fractional derivative of index 0 < α < 1 is given by

(2.1) Dαt f (t) =
∂

∂t

1

Γ (1− α)

tˆ

0

(t− r)−α f (r) dr,
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for a suitable function f de�ned on R+. When the variable with respect to which we take the
derivative is obvious we drop the subscript and just write Dαf (t). It can be easily veri�ed that the
LT of (2.1) is

D̂αf (s) = sαf̂ (s) .

Hence, the RL derivative is a pseudo-di�erential operator of symbol sα. Caputo's derivative is
obtained by moving the derivative in (2.1) under the integral to obtain

(2.2) Dα
t f (t) =

1

Γ (1− α)

tˆ

0

(t− r)−α ∂

∂r
f (r) dr.

The LT of (2.2) is

D̂αf (s) = sαf̂ (s)− sα−1f
(
0+
)
.

We denote the classic derivative by ∂
∂t = D1, and note that D1 = D1 i� f (0+) = 0. For simplicity

we drop the superscript and write ∂
∂t = D(or ∂

∂t = D when that is the case).

2.3. On some pseudo-di�erential operators. Here we investigate the pseudo-di�erential op-
erators(PDO) acting on functions f (t) that are di�erentiable on C = {t : 0 < t1 < t2 < ... < tn}
with support C̄ = {t : 0 ≤ t1 ≤ t2 ≤ ... ≤ tn} with LT f̂ and s.t lim

tn→∞
f (t) = 0. Let us begin by

considering Dtf (t) =
∑n
i=1

∂
∂ti
f (t).

Lemma 1. Let f be as above. Then the LT of Dtf (t) is

(2.3) D̂tf (t) =

(
n∑
i=1

sn

)
f̂ (s1, . . . sn)− lim

x1→0+
f̂ (x1, s2, ..., sn) .
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Proof. In the following, we use ǎi to indicate that ai is absent from where it normally should be.
For 1 ≤ i ≤ n we have

∞̂

t1=0

∞̂

t2=0

· · ·
∞̂

tn=0

e−s1t1−s2t2···−sntn
∂f (t)

∂ti
dt1dt2 · · · dtn

(2.4)

=

∞̂

t1=0

· · ·
∞̂̌

ti=0

· · ·
∞̂

tn=0

e−s1t1···−
ˇsiti···−sntn

 ∞̂

ti=0

e−siti
∂f (t)

∂ti
dti

 dt1 · · · ďti · · · dtn
=

∞̂

t1=0

· · ·
∞̂̌

ti=0

· · ·
∞̂

tn=0

e−s1t1···−
ˇsiti···−sntn

[
e−sitif (t)

∣∣(t1,...,ti−1,ti+1,ti+1,...,tn)

(t1,...,ti−1,ti−1,ti+1,...,tn)

+si

∞̂

ti=0

e−sitif (t1, t2, ..., tn) dti

 dt1 · · · ďti · · · dtn
=

∞̂

t1=0

· · ·
∞̂̌

ti=0

· · ·
∞̂

tn=0

e−s1t1···−
ˇsiti···−sntn

e−siti+1f

t1 . . . , ti−1, ti+1︸︷︷︸
i'th coordinate

, ti+1..., tn


−e−siti−1f

t1 . . . , ti−1, ti−1︸︷︷︸
i'th coordinate

, ti+1..., tn

+ si

∞̂

ti=0

e−sitif (t1, t2, ..., tn) dti

 dt1 · · · ďti · · · dtn

=

∞̂

ti+1=0

e−(si+si+1)ti+1 f̂

s1 . . . , si−1, ti+1︸︷︷︸
i'th coordinate

, ti+1, si+2..., sn

 dti+1

(2.5)

−
∞̂

ti−1=0

e−(si+si−1)ti−1 f̂

s1 . . . , ti−1, ti−1︸︷︷︸
i'th coordinate

, si+1, si+2..., sn

 dti−1 + sif̂ (s1, s2, ..., sn)

(2.6)

Note that since lim
tn→∞

f (t1, . . . , tn) = 0, summing over the variable i the �rst two terms in the last

equation in 2.4 cancel out for every i 6= 1. For i = 1 only the second term in the brackets cancels
out and the result follows. �

Dt is just the directional derivative along the vector v = (1, ..., 1). Let Ψx be a PDO on R
with symbol ψ(k). Then ψ(

∑n
i=1 ki) is a symbol of the PDO Ψx where we use bold x subscript to

emphasize the fact that Ψx is de�ned on functions(measures) on Rn. One can think of Ψx as the
directional version of Ψx with directional vector v = (1, ..., 1).

De�ne the RL fractional derivative of index 0 < α < 1 of f (t) to be

(2.7) Dαt f =

(
n∑
i=1

∂

∂ti

) t1ˆ

0

f (t1 − r, t2 − r, ..., tn − r)
r−α

Γ (1− α)
dr.
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Equation (2.7) can be thought of as a fractional directional derivative.

Lemma 2. The LT of Dαf is (
∑n
i=1 sn)

α
f̂ (s1, . . . sn).

Proof. A simple computation shows that

L

 t1ˆ

0

f (t1 − r, t2 − r, ..., tn − r)
r−α

Γ (1− α)
dr

 =

(
n∑
i=1

si

)α−1

f̂ (s1, . . . sn) .

It follows by Lemma 1 that

D̂αf = L

( n∑
i=1

∂

∂ti

) t1ˆ

0

f (t1 − r, t2 − r, ..., tn − r)
r−α

Γ (1− α)
dr

 =

(
n∑
i=1

sn

)α
f̂ (s1, . . . sn) .

�

2.4. The Semi-Markov Approach. Since the process Xt = AEt is not Markovian, knowing its
one dimensional distribution in not enough to construct its �nite dimensional distributions. To
circumvent this problem Meerschaert and Straka ([9]) constructed the Markov process (Xt, Rt),
where Rt = DEt − t is the time for regeneration of the process Xt. Let Qt (x′, r′; dx, dr) be the
transition probability of the process (Xt, Rt) and 0 < t1 < t2 < ... < tn for some n ∈ N. Then

P (Xt1 ∈ dx1, Xt2 ∈ dx2, ..., Xtn ∈ dxn)

=

∞̂

r1=0

∞̂

r2=0

· · ·
∞̂

rn=0

Qt1 (0, 0; dx1, dr1)

×Qt2−t1 (x1, r1; dx2, dr2) · · ·Qtn−tn−1

(
xtn−1 , rtn−1 ; dxn, drn

)
= Qt1 (0, 0; dx1, dr1) ◦Qt2−t1 (x1, r1; dx2, dr2) · · ·Qtn−tn−1

(
xtn−1 , rtn−1 ; dxn, drn

)
◦ .

Here, Qt (x′, r′; dx, dr)◦f (x, r) =

∞̂

r=0

f (x, r)Qt (x′, r′; dx, dr) andQt (x′, r′; dx, dr) ◦ =

∞̂

r=0

Qt (x′, r′; dx, dr).

In [9], the expression for Qt is given for a large class of processes. Here, however, unless stated
otherwise we consider processes of the form Xt = AEt , where At is a Lévy process and Et is the
inverse of a strictly increasing subordinator Dt that is independent of At. That is,

Et = inf {s > 0 : Ds > t} .

More precisely, the characteristic function of At and the Laplace transform of Dt are given respec-
tively by

E
(
eiuAt

)
= exp

t
ibu− 1

2
au2 +

ˆ

R

(
eiuy − 1− iuy1{|y|<1}

)
K1 (dy)

(2.8)

E
(
e−sDt

)
= exp

t
ˆ
R+

(
e−sy − 1

)
K2 (dy)


 .
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Here, a ≥ 0, b ∈ R. K1 is a Lévy measure while K2 is a measure whose support is [0,∞) and
satis�es

´
(y ∧ 1)K2 (dy) <∞, K2 ({0}) = 0 and

´
K2 (dy) =∞. By (2.8) it can be easily veri�ed

that the in�nitesimal generator A of the process (At, Dt) is

A (f) (x, t) = b
∂

∂x
f (x, t) +

a

2

∂2

∂x2
f (x, t)(2.9)

+

ˆ

R2

(
f (x+ y, t+ w)− f (x, t)− y ∂f(x, t)

∂x
1{|(y,w)|<1}

)
K (dy, dw) ,

where K is again a Lévy measure. In [9], the case where the coe�cients b and a as well as the
measure K may be dependent on (x, t) is considered. However, when they do not(this is referred
to as the homogeneous case), the transition probability Qt is given by ([9, Equation. 4.4])

Qt (x′, r′; dx, dr) = 1{0<t<r′}δ0 (dx− x′) δr′−t (dr) + 1{0≤r′≤t}Qt−r′ (x
′, 0; dx, dr)

Qt (x′, 0; dx, dr) =

ˆ

y∈R

ˆ

w∈[0,t]

Ux
′
(dy, dw)K (dx− y, dr + t− w) ,(2.10)

where Ux
′
(dy, dw) is the occupation measure of (At, Dt), i.e

ˆ
f (y, w)Ux

′
(dy, dw) = E

 ∞̂

0

f (Au + x′, Du) du

 .

When the processes At and Dt are independent, it can be easily veri�ed that

(2.11) Ux
′
(dy, dw) =

∞̂

0

z (dy − x′, u) g (dw, u) du,

where z (dx, t) = P (At ∈ dx) and g (dx, t) = P (Dt ∈ dx). Moreover, in the case of independence
it was shown that ([3, Corollary 2.3])

K (dy, dw) = K1 (dy) δ0 (dw) + δ0 (dy)K2 (dw) .

Hence, equations (2.10) translate into

Qt (x′, r′; dx, dr) = 1{0≤t<r′}δ0 (dx− x′) δr′−t (dr)

+ 1{0≤r′≤t}

ˆ

y∈R

ˆ

w∈[0,t−r′]

 ∞̂

0

z (dy − x′, u) g (dw, u) du


× (δ0 (dr + t− r′ − w)K1 (dx− y) + δ0 (dx− y)K2 (dr + t− r′ − w)) .(2.12)
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However, since
´
K2 (dy) =∞, we see ([10, Theorem. 27.4]) that g (dw, t) has no atoms. Therefore,

(2.12) reduces to

Qt (x′, r′; dx, dr) = 1{0≤t<r′}δ0 (dx− x′) δr′−t (dr)

+ 1{0≤r′≤t}

ˆ

w∈[0,t−r′]

 ∞̂

0

z (dx− x′, u) g (w, u) du

(2.13)

×K2 (dr + t− r′ − w) dw.

3. Fokker-Planck Equations

Throughout this section, we let At be a Lévy process such that E
(
eikAt

)
= etψ(k), its probability

density is given by z (dx, t) = P (At ∈ dx). Et is the inverse of a subordinator Dt such that
E
(
e−sDt

)
= etφ(s), its probability density is h (dx, t) = P (Et ∈ dx). We denote by Ψ and Φ

the pseudo-di�erential operators of the symbols ψ (−k) and −φ (s) respectively. We also denote
the transition probability function of the Markov process (Xt, Rt) by Qt and that of (Et, Rt) by

Ht. Next note that the occupation measure of (t, Et) is just Ux
′
(dx, dw) = g (dw, x− x′) dx, and

similarly to (2.13) we have

Ht (x′, r′; dx, dr) = 1{0≤t<r′}δ0 (dx− x′) δr′−t (dr)

+ 1{0≤r′≤t}

ˆ

w∈[0,t−r′]

g (dw, x− x′) dx×K2 (dr + t− r′ − w) dr.

Theorem 1. Suppose the measure K2 has a continuous density k2. Let h (dx1, ..., dxn; t1, ..., tn) be

the �nite dimensional distribution of Et where t1 < t2 < ... < tn, i.e

h (dx1, ..., dxn; t1, ..., tn) = P (Et1 ∈ dx1, ..., Etn ∈ dxn) .

Then

(3.1) Φth (dx1, ..., dxn; t1, ..., tn) = −Dxh (dx1, ..., dxn; t1, ..., tn) .

Proof. Let us take LT with respect to the spatial variables and with respect to the time variables,
this will be abbreviated by LLT. Before taking the LLT of h (dx1, ..., dxn; t1, ..., tn) we note that
since Ht (x′, r′; dx, dr) is translation invariant with respect to the spatial variable we have

h (dx1, ..., dxn; t1, ..., tn)

= Ht1 (0, 0;x1, dr1) ◦Ht2−t1 (0, r1;x2 − x1, dr2) · · ·Htn−tn−1 (0, rn−1;xn − xn−1, drn) ◦ .(3.2)

Taking the LLT of (3.2), by a simple change of variables we see that

h (λ1, . . . λn; s1, . . . sn)

=

∞̂

t1=0

∞̂

x1=0

e−(
∑n
i=1 si)t1−(

∑n
i=1 λi)x1Ht1 (0, 0; dx1, dr1) ◦ dt1(3.3)

· · ·Hsn+sn−1
(0, r1; kn + kn−1, drn−1) ◦Hsn (0, rn−1; kn, drn) ◦ .
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Now, let us look at

∞̂

t1=0

∞̂

x1=0

e−(
∑n
i=1 si)t1−(

∑n
i=1 λi)x1Ht1 (0, 0; dx1, dr1) dt1

=

∞̂

t1=0

∞̂

x1=0

e−(
∑n
i=1 si)t1−(

∑n
i=1 λi)x1

ˆ

w∈[0,t1]

g (dw, x1) dx1

× k2 (r1 + t1 − w) dr1

=

∞̂

x1=0

e−(
∑n
i=1 λi)x1

ˆ

w∈[0,∞]

g (dw, x1) dx1

×
∞̂

t1=w

e−(
∑n
i=1 si)t1k2 (r1 + t1 − w) dr1

=

∞̂

x1=0

e−(
∑n
i=1 λi)x1

ˆ

w∈[0,∞]

g (dw, x1) dx1e
−(

∑n
i=1 si)w

×
∞̂

t1=0

e−(
∑n
i=1 si)t1k2 (r1 + t1) dr1

=
1∑n

i=1 λi − φ (
∑n
i=1 si)

∞̂

t1=0

e−(
∑n
i=1 si)t1k2 (r1 + t1) dr1.(3.4)

Next note that,

lim
x1→0+

h (x1, λ2, . . . λn; s1, . . . sn)

(3.5)

= lim
x1→0+

∞̂

t1=0

e−(
∑n
i=1 si)t1−(

∑n
i=2 λi)x1

ˆ

w∈[0,t1]

g (dw, x1)×
∞̂

r1=0

k2 (r1 + t1 − w) dr1

×H∑n
i=2 si

(
0, r1;

n∑
i=2

λi, dr2

)
◦ · · ·Hsn+sn−1

(0, rn−2;λn + λn−1, drn−1) ◦Hsn (0, rn−1;λn, drn) ◦ .

=

∞̂

t1=0

e−(
∑n
i=1 si)t1

∞̂

r1=0

k2 (r1 + t1) dr1

×H∑n
i=2 si

(
0, r1;

n∑
i=2

λi, dr2

)
· · ·Hsn+sn−1 (0, rn−2;λn + λn−1, dr2) ◦Hsn (0, rn−1;λn, drn) ◦,
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since g (dw, x1) converges weakly to δ0 (dw) as x1 → 0+ and k2 is continuous. Finally, plugging
(3.4) in (3.3), using (3.5) and rearranging terms we arrive at
(3.6)

−φ

(
n∑
i=1

si

)
h (λ1, . . . λn; s1, . . . sn) = −

(
n∑
i=1

λi

)
h (λ1, . . . λn; s1, . . . sn)+h

(
0+, λ2, . . . λn; s1, . . . sn

)
.

Taking the inverse LLT of (3.6) and using Lemma 1 we obtain (3.1). �

Theorem 1 paves the way for the �nite dimensional FFPEs of the process Xt.

Corollary 1. Let p (dx1, ..., dxn; t1, ..., tn) = P (Xt1 ∈ dx1, . . . , Xtn ∈ dxn). Then

Φtp (dx1, ..., dxn; t1, ..., tn) = Ψxp (dx1, ..., dxn; t1, ..., tn)

+

∞̂

u2=0

· · ·
∞̂

un=un−1

δ0 (dx1) z (dx2, ..., dxn;u2, ..., un)h
(
0+, du2, . . . , dun; t1, . . . , tn

)
(3.7)

Proof. By the independence of At and Dt

p (dx1, ..., dxn; t1, ..., tn)

(3.8)

=

∞̂

u1=0

∞̂

u2=u1

· · ·
∞̂

un=un−1

z (dx1, ..., dxn;u1, ..., un)h (du1, . . . , dun; t1, . . . , tn)

=

∞̂

u1=0

· · ·
∞̂

un=un−1

z (dx1, u1) z (dx2 − x1, u2 − u1) · · · z (dxn − xn−1, un − un−1)h (du1, . . . , dun; t1, . . . , tn) .

Taking the FLT of p (dx1, ..., dxn; t1, ..., tn) and applying the change of variables u′2 = u2 − u1 we
obtain

p (k1, ..., kn; s1, ..., sn)

=

∞̂

u1=0

∞̂

t1=0

ˆ

x1∈R

e−(
∑n
i=1 si)t1−(i

∑n
i=1 ki)x1z (dx1, u1)Ht1 (0, 0; du1, dr1) ◦ dt1dx1

×
∞̂

u2=0

· · ·
∞̂

un=un−1

z̃

(
n∑
i=2

ki, u2

)
· · · z̃ (kn, un − un−1)H∑n

i=2 si
(0, r1; du2 − u1, dr2) ◦ · · ·Hsn (0, rn−1; dun, drn) ◦

(3.9)
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Let us look at
∞̂

u1=0

∞̂

t1=0

ˆ

x1∈R

e−(
∑n
i=1 si)t1−(i

∑n
i=1 ki)x1z (dx1, u1)Ht1 (0, 0; du1, dr1) dt1

=

∞̂

u1=0

∞̂

t1=0

ˆ

x1∈R

e−(
∑n
i=1 si)t1−(i

∑n
i=1 ki)x1z (dx1, u1)

×
ˆ

w∈[0,t1]

g (dw, u1) du1k2 (r1 + t1 − w) dr1dt1

=

∞̂

u1=0

∞̂

w=0

ˆ

x1∈R

e−i(
∑n
i=1 ki)x1−(

∑n
i=1 si)wz (dx1, u1) g (dw, u1) du1

×
∞̂

t1=0

e−(
∑n
i=1 si)t1k2 (r1 + t1) dr1dt1

=
1

−ψ (−
∑n
i=1 ki)− φ (

∑n
i=1 si)

∞̂

t1=0

e−(
∑n
i=1 si)t1k2 (r1 + t1) dr1.(3.10)

Plugging (3.10) in (3.9) and using (3.5) we have

p (k1, ..., kn; s1, ..., sn) =
1

−ψ (−
∑n
i=1 ki)− φ (

∑n
i=1 si)

×
∞̂

u2=0

· · ·
∞̂

un=un−1

z̃

(
n∑
i=2

ki, u2

)
· · · z̃ (kn, un − un−1) ĥ

(
0+, du2, . . . , dun; s1, . . . , sn

)
.

Rearranging and taking the inverse FLT we arrive at (3.7). �

Working along similar lines to the proof of Theorem 1 one can also obtain the �nite dimen-
sional FFPEs of the process Xt = AEt where Et is the inverse of a strictly increasing subordi-
nator Dt and (At, Dt) is a Lévy process, i.e. the processes At and Dt are not necessarily in-
dependent. More precisely, suppose E

(
eikAt−sDt

)
= etξ(k,s) and that ξ (k, s) = ibk − 1

2ak
2 +ˆ

R

(
eiky−sw − 1− iky1{|(y,w)|<1}

)
K (dy, dw) and that Ξ is the operator whose symbol is −ξ (−k, s).

Corollary 2. Let (At, Dt) be a Lévy process s.t E
(
eikAt−sDt

)
= etξ(k,s). Let Et be the inverse of the

strictly increasing subordinator Dt and let p (dx1, ..., dxn; t1, ..., tn) = P (Xt1 ∈ dx1, . . . , Xtn ∈ dxn).
Then

Ξx,tp (dx1, ..., dxn; t1, ..., tn) =

∞̂

r1=0

K (dx1, dr1 + t1)

(3.11)

×Qt2−t1 (x1, r1; dx2, dr2) ◦ · · ·Qtn−tn−1
(xn−1, rn−1; dxn, drn) ◦ .(3.12)
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Proof. Using (2.10) we see that Qt is again translation invariant with respect to the spatial variable.
Note that here

Ux
′
(dy, dw) =

∞̂

0

v (dy, dw;u) du,

where v (dy, dw;u) = P (Au ∈ dy,Du ∈ dw). Using the same ideas as in the proof of Theorem 1 we
obtain

p (k1, ..., kn; s1, ..., sn) =

∞̂

t1=0

ˆ

x1∈R

e−(
∑n
i=1 si)t1−(

∑n
i=1 ki)x1

∞̂

u=0

v (dy, dw;u) du

∞̂

r1=0

ˆ

y∈R

t1ˆ

w=0

K (dx1 − y, dr1 + t1 − w)

×Q∑n
i=2 si

(
0, dr1;

n∑
i=2

ki, dr2

)
◦ · · ·Qsn (0, rn−1; kn, drn) ◦

=

ˆ

y∈R

∞̂

w=0

e−(
∑n
i=1 si)w−(

∑n
i=1 ki)y

∞̂

u=0

v (dy, dw;u) du

∞̂

r1=0

∞̂

t1=0

ˆ

x1∈R

e−(
∑n
i=1 si)t1−(

∑n
i=1 ki)x1

×K (dx1, dr1 + t1)Q∑n
i=2 si

(
0, dr1;

n∑
i=2

ki, dr2

)
◦ · · ·Qsn (0, rn−1; kn, drn) ◦

=
1

−ξ (−
∑n
i=1 ki,

∑n
i=1 si)

∞̂

r1=0

∞̂

t1=0

ˆ

x1∈R

e−(
∑n
i=1 si)t1−(

∑n
i=1 ki)x1K (dx1, dr1 + t1)

×Q∑n
i=2 si

(
0, dr1;

n∑
i=2

ki, dr2

)
◦ · · ·Qsn (0, rn−1; kn, drn) ◦ .

Rearrange and invert to obtain (3.11). �

4. Examples

Theorem 1 as well as Corollary 1 and Corollary 2 should be compared with their one-dimensional
counterparts to gain a better understanding of the dynamics of the processes whose distributions
govern those equations. We start with a speci�c case of the one dimensional analogue of Theorem
1.

Example 1. LetDt be a standard stable subordinator of index 0 < α < 1, i.e. E
(
e−sDt

)
= et(−s

α).
Its inverse Et has a distribution h (x, t) which satis�es ( [8, Equation 5.5])

Dαt h (x, t) = −Dxh (x, t) ,

on x, t > 0. Since here φ (s) = −sα, we see that Φt = Dαt .

Next we look at the one dimensional analogue of Corollary 1.

Example 2. Again we let Dt be a standard stable subordinator of index 0 < α < 1 , and At be a
Lévy process s.t E

(
eikAt

)
= etψ(k). Then the distribution p (dx, t) of AEt satis�es ( [8, Equation

5.6])

(4.1) Dαt p (dx, t) = Ψxp (dx, t) +
t−α

Γ (1− α)
δ0 (dx) .
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To see why (3.7) can be thought of as a generalization of (4.1) note that h (0+, t) = t−α

Γ(1−α) ([8,

Equation 4.3]) and rewrite (4.1) as

Dαt p (x, t) = Ψxp (x, t) + δ0 (dx)h
(
0+, t

)
.

Our last example concerns the one dimensional analogue of Corollary 2.

Example 3. Let (At, Dt) be a Lévy process as in Corollary 2. Then its one dimensional distribution
p (dx, t) satis�es

(4.2) Ξx,tp (dx, t) =

∞̂

r=0

K (dx, dr + t) .

This was shown in [5, Theorem 4.1].

Remark 1. In [1, Equation 5.9] Buale and Friedrich essentially obtained Equation 3.1 for the case
where Dt is a standard stable subordinator. In [2, Equation 14] Bauale and Friedrich obtained
Equation 3.7(uncoupled case) for the two dimensional case.
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