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Uses of computing class numbers for automorphic forms

Imaginary class numbers are used to compute holomorphic modular forms
using a trace formula.

Real quadratic class numbers are used to compute Maass forms, again
using a trace formula.

More class numbers = More automorphic forms

Numerical verification of the Selberg eigenvalue conjecture up to level 880
by Booker, Lee and Strömbergsson also uses real quadratic class numbers.
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Previous computations of real quadratic fields

Source Bound Invariants

Gauss ∆ < 1000 h∆

Saito and Wada 1988 ∆ < 106 Cl∆, R∆

Jacobson 1998 ∆ < 109 Cl∆, R∆

te Riele and Williams 2003 p < 2 · 1011, p ≡ 1 (mod 4) h∆, R∆

Hafner and McCurley: O(exp((log ∆)1/2+ε)) (runtime heuristic)

Buchmann: O(∆1/4+ε)

Lenstra/Shanks: O(∆1/5+ε)

Unfortunately, these algorithms all rely on GRH.
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Imaginary quadratic fields

For the case of imaginary quadratic fields Ramachandran, Jacobson, and
Williams used modular forms to unconditionally compute and verify class
numbers of imaginary quadratic fields.

Idea:

1) Compute a list of class numbers for imaginary quadratic fields up to
discriminant of size say X . With Buchmann’s algorithm, you would
get a lower bound to the size of the class numbers.

2) Use the trace formula for holomorphic forms of fixed weight and level
to derive an upper bound and compare the two.

In fact, in their algorithm no modular forms are needed, since we can
choose a space of fixed weight and level that is empty and still derive a
non-trivial expression for the class numbers.
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Maass cusp forms

We call a function f : H→ C a Maass cusp form on Γ = SL2(Z) if

1) f is automorphic, f (γz) = f (z) for all γ ∈ Γ,

2) f is an eigenfunction of the Laplacian, ∆f = λf , λ ≥ 0,

3) f ∈ L2(Γ\H), i.e f is square-integrable,

4) f vanishes at the cusp of Γ\H.

For any f and any non-zero integer n, we have the Hecke operator Tn

that maps Maass forms to Maass forms. Further f has a Fourier expansion
of the form

f (z) = f (x + iy) =
∑
n 6=0

a(n)
√
yKir (2π|n|y) exp(2πinx)

where Kν(u) is the K-Bessel function and λ = 1
4 + r2.
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Selberg trace formula

The Selberg trace formula allows one to consider the whole spectrum of
Maass cusp forms. Selberg derived this in the 1950’s to prove the
existence of Maass cusp forms.

In our case, if we have a Hecke eigenbasis {fj} of level 1 Maass cusp forms
with respective Laplace eigenvalues λj = 1

4 + r2
j and Hecke eigenvalues

aj(n), the Selberg trace formula allows us to compare

(Spectral side)
∞∑
j=1

aj(n)H(λj) = (Geometric side)

for some nice (analytic) test function H and n 6= 0.
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Explicit trace formula

Important for us, is that the geometric side contains class numbers of real
quadratic fields! Explicitly, let g be the Fourier transform of h, then

∞∑
j=1

aj(n)h(rj) =
∑
t∈Z√

D=
√
t2−4n 6∈Q

D>0

L(1, ψD)g

(
log

(
(|t|+

√
D)2

4n

))
+ Ψ(n),

where, with D = d`2, we have

L(1, ψD) =
L(1, ψd)

`

∏
p|`

[
1 + (1− ψd(p))

(`, p∞)− 1

p − 1

]
.
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Idea of the algorithm

Choosing a specific test function, we can write the trace formula as

∞∑
j=1

aj(n)h(rj) =
∑
t∈Z√

D=
√
t2−4n 6∈Q

0<D≤X

L(1, ψD)

(
1− D

X

)k

+ Ψ(n).

Truncating the spectral sum and rearranging, we have

∑
t∈Z√

D=
√
t2−4n 6∈Q

0<D≤X

L(1, ψD)

(
1− D

X

)k

=
∑
rj≤R

aj(n)h(rj) + En −Ψ(n).
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Idea of the algorithm

1) Compute the class number and regulator for real quadratic fields up
to discriminant X (plus a little extra). Recall Buchmann’s will give a
lower bound to the size of the class number unconditionally.

2) Also compute the spectral side of the trace formula for all n ≤
√
X

and a bound for the error En. This will be used as a upper bound on
the size of the class numbers.

3) To verify a given class number, we double it in the hyperbolic sum. If
this breaks RHS of the above equation we get a contradiction and
thus our class number was correct.

For part 2), we need to rigorously compute the Laplace eigenvalues and all
Hecke eigenvalues up to

√
X for several Maass cusp forms.
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Complexity

Buchmann’s algorithm computes the class number in O(∆1/4+ε). Due to
work of De Haan, Jacobson and Williams, we can unconditionally compute
the regulator in O(∆1/6+ε). Thus to compute all class numbers and
regulators up to discriminant X is O(X 5/4+ε).

We need to compute the trace formula for all n ≤
√
X . This computation

is dominated by computing the hyperbolic terms, of which there are
roughly X . Hence the verification can be done in O(X 1+ε).

Overall, we get O(X 5/4+ε) to compute and unconditionally verify all class
numbers up to discriminant X .
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Implementation

We implemented this algorithm and have unconditionally computed all
class numbers and regulators up to discriminant X = 1011.

To do this, we computed the Laplace eigenvalues of the first 2184 Maass
forms of level 1, and all Hecke eigenvalues an with n ≤

√
X .

We are currently running this code to improve this bound to
X = 240 ≈ 1012.
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Can we do better?

For the imaginary quadratic field case, to compute the class number
Jacobson and Mosunov used a relation between the Fourier coefficients of
one of the classical Jacobi theta function and the Hurwitz class number.
Computing the Fourier coefficients can be done in subexpontential time.

Something similar should be possible for real quadratic fields. Goldfeld and
Hoffstein (1985) derived a half-integral weight Eisenstein series whose
Fourier coefficients are related to L(1, χ∆) for ∆ > 0.

Using Hejhal’s algorithm one could compute the Fourier coefficients, and
hence the L(1, χ∆) value in subexponential time. However, to get the
class number we would still need the regulator. Hence currently
unconditionally, the best speed we could obtain is O(X 7/6+ε) to compute
all class numbers up to discriminant X .
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Cohen–Lenstra heuristics

Figure: Ratio of actual and expected frequencies of odd class number h over
∆ ≤ X .
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Cohen–Lenstra heuristics

Figure: Ratio of actual and expected frequencies of odd rank r over ∆ ≤ X .
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Thanks for listening!
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