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Maass cusp forms
Let H = {z = x + iy |y > 0} denote the upper half-plane. We
define the Hecke congruence subgroup Γ0(N) < SL(2,Z) by

Γ0(N) =

{(
a b
c d

)
∈ SL(2,Z)|c ≡ 0 (mod N)

}
for N > 0. This group acts on H by linear fractional
transformations, i.e(

a b
c d

)
z =

az + b
cz + d

∀γ =

(
a b
c d

)
∈ Γ0(N), z ∈ H.

The modular surface X = Γ0(N)\H is a finite volume non-compact
surface with Laplacian

∆ = −y2
(
∂2

∂x2 +
∂2

∂y2

)
.

We also have the measure
dx dy

y2 .
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Maass cusp forms

We call a function f : H→ C a Maass cusp form of level N (trivial
character) if

1. f is an eigenfunction of the Laplacian, ∆f = λf , λ ≥ 0,

2. f is automorphic, f (γz) = f (z) for all γ ∈ Γ0(N),

3. f ∈ L2(X ), i.e f is square-integrable,

4. f vanishes at all of the cusps of X .

We will denote the space of Maass cusp forms of level N and
Laplace eigenvalue λ by Sλ(N).
The set of functions that just satisfy points (2), (3) and (4) we shall
denote as L2

cusp(X ).
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Pictures of Maass forms

(a) Level 1, λ = 91.141345 . . . (b) Level 1, λ = 190.131547 . . .

(c) Level 2, λ = 79.867724 . . . (d) Level 3, λ = 182.713668 . . .

Figure: Images of Maass forms from the LMFDB.
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Hecke operators

For any f ∈ Sλ(N) and any non-zero integer n coprime to N, we
define the Hecke operator Tn by

Tnf (z) =
1√
|n|

∑
ad=n

(a,N)=1
d>0

d−1∑
j=0


f
(

az + j
d

)
if n > 0,

f
(

az + j
d

)
if n < 0.

This will map Sλ(N)→ Sλ(N).

Now a famous result then tells us that there exists an orthogonal
basis {fj} in L2

cusp(X ) consisting of eigenfunctions to all Hecke
operators Tn with (n,N) = 1.
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Hecke eigenvalues
A Maass cusp form f of level N and with Laplace eigenvalue
λ = 1

4 + R2 has a Fourier expansion (at∞) of the form

f (z) =
∑
n 6=0

a(n)
√

yKiR(2π|n|y)e(nx)

where e(nx) = exp(2πinx) and Kν(u) is the K-Bessel function.

We call a Maass form f even if a(−n) = a(n) or odd if
a(−n) = −a(n).
If f is also a Hecke eigenfunction for all Hecke operators Tn with
(n,N) = 1, i.e Tnf = λ(n)f , then we can normalise such that
a(1) = 1 and we have

a(n) = λ(n)

a(−n) = ελ(n)

where ε is 1 is f is even and −1 if f is odd.
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Hejhal’s Algorithm

There are a few methods known for computing Maass forms, the
most widely used is an algorithm due to Hejhal from the 1990’s.
The algorithm goes in the following steps

1. Truncate the Fourier series and treat it like a discrete Fourier
series.

2. Do an inverse Fourier transform along a certain horocycle of
points away from the fundamental domain.

3. This will give an expression for the Fourier coefficients,
however to make it a non-tautology, we use the automorphy of
the Maass form to produce a linear system for the Fourier
coefficients.

4. We then use a non-linear search strategy to zoom in on an
Laplace eigenvalue.

This method is heuristic, so we require another method to certify if
the data produced is correct.
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Verification methods

I In 2006, Booker, Strömbergsson and Venkatesh proved that it
is possible to certify whether a candidate Maass form is
“close” to a true Maass form. Roughly, suppose you have a
computed eigenvalue λ̃ = 1

4 + R̃2 and the coefficients of a
suspected Maass form f̃ . Then they showed that if f̃ is “almost
automorphic”, then f̃ is “close” to a true Maass cusp form f .
They only showed this for level 1, i.e SL(2,Z) and computed
and verified the first few Maass cusp forms to a hundred digits.

I In 2007, Booker and Strömbergsson devised a different way
to rigorously compute Maass cusp forms. The main tool they
used for this was an explicit Selberg trace formula that was for
suitable for numerical computation.
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Selberg trace formula

The Selberg trace formula allows one to consider the whole
spectrum of Maass cusp forms for a fixed level N. Selberg derived
this in the 1950’s to prove the existence of Maass cusp forms.

In our case, if we have a Hecke eigenbasis {fj} of L2
cusp(X ) with

respective Laplace eigenvalues λj , the Selberg trace formula
allows us to compare

(Spectral side)
∞∑

j=1

H(λj) = (Geometric side)

for some nice (analytic) test function H. The RHS will be a
collection of terms that will all be computable and can give us
information on the LHS. In our case we will also consider a trace
formula with Hecke operators on the LHS.

9 / 23



Selberg trace formula

The Selberg trace formula allows one to consider the whole
spectrum of Maass cusp forms for a fixed level N. Selberg derived
this in the 1950’s to prove the existence of Maass cusp forms.
In our case, if we have a Hecke eigenbasis {fj} of L2

cusp(X ) with
respective Laplace eigenvalues λj , the Selberg trace formula
allows us to compare

(Spectral side)
∞∑

j=1

H(λj) = (Geometric side)

for some nice (analytic) test function H. The RHS will be a
collection of terms that will all be computable and can give us
information on the LHS. In our case we will also consider a trace
formula with Hecke operators on the LHS.

9 / 23



Aside to modular forms

Explicit versions of trace formulas for modular forms have been
used to compute basis elements of the spaces of modular forms,
for example in the pari command mfeigenbasis. Since these
spaces are finite dimensional, one can use the Hecke operators
and linear algebra to extract the Fourier coefficients of the basis
elements.

In the Maass form case, the spaces we will be working with are
infinite dimensional, hence the requirement for the test function in
the trace formula. Our idea is to mimic the holomorphic form case
by choosing a test function such that the contribution from the
larger eigenvalues is negligible and we can then treat the problem
as a finite linear algebra one.
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Example of a test function
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Verification using the Selberg trace formula
Fix a level N. Let {fj} be a Hecke eigenbasis of L2

cusp(X ) with
respective Laplace eigenvalues λj such that λ1 ≤ λ2 ≤ . . .. Let
aj(n) be the Hecke eigenvalues of fj , that is Tnfj = aj(n)fj for
(n,N) = 1.

We will fix a sufficiently nice test function H that is positive and
monotonically decreasing for λ > 0. The Selberg trace formula
allows us to compute

t(n,H) :=
∞∑

j=1

aj(n)H(λj)

for any n 6= 0 and (n,N) = 1.
The main idea here is to use linear algebra to remove the
contribution of all the forms up to some limit and isolate just 1 form.
We then use our approximation to this form (say computed using
Hejhal’s algorithm) to see how well the approximation removes the
remaining contribution.
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The details
Using the Hecke relations, we have for any real sequence of
numbers {c(m)}M

m=1 satisfying c(m) = 0 if (m,N) > 1, that(
M∑

m=1

c(m)aj(m)

)2

=
M∑

m1=1

M∑
m2=1

c(m1)c(m2)
∑

d |(m1,m2)

aj

(m1m2

d2

)
.

We define

Q(c,H) :=
∞∑

j=1

(
M∑

m=1

c(m)aj(m)

)2

H(λj)

=
M∑

m1=1

M∑
m2=1

c(m1)c(m2)
∑

d |(m1,m2)

∞∑
j=1

aj

(m1m2

d2

)
H(λj)

=
M∑

m1=1

M∑
m2=1

c(m1)c(m2)
∑

d |(m1,m2)

t
(m1m2

d2 ,H
)
.
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Intuition

Suppose that we have putative numerical approximations λ̃j , ãj(m)
to λj , aj(m). Then we want to choose numbers ci(m) such that
ci(m) = 0 if (m,N) > 1 and

M∑
m=1

ci(m)ãj(m) =

{
1 if j = i,

0 otherwise.

Let H̃i(λ) = H(λ)(λ− λ̃i)
2. For the verification we shall prove that

there exists a Laplace eigenvalue near λ̃i . For this, we use the
definition of Q to compute

εi :=

√
Q(ci , H̃i)

Q(ci ,H)
.

Then there exists a cuspidal eigenvalue λ ∈ [λ̃i − εi , λ̃i + εi ].
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In practice

Suppose that we have putative numerical approximations λ̃j .
Define

εi :=

√
Q(ci , H̃i)

Q(ci ,H)
,

for some real sequence of numbers ci(m) with ci(m) = 0 if
(m,N) > 1. The RHS is just a ratio of two positive definite
quadratic forms, so we can just minimise this ratio. This will then
give us the ci(m) that can be used to calculate εi .
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Completeness

For completeness of the eigenvalues we have that
H(λ) ≥ H(λ̃i + εi) for all λ ∈ [λ̃i − εi , λ̃i + εi ]. Hence any
eigenvalue λ that is not contained in

⋃
i [λ̃i − εi , λ̃i + εi ] must satisfy

H(λ) ≤ t(1,H)−
∑

i

H(λ̃i + εi),

where the second sum ranges over all such i such that
[λ̃i − εi , λ̃i + εi ] does not overlap the corresponding interval for any
smaller value of i .

Since H is monotonic, this determines numbers δi > 0 such that
|λi − λ̃i | ≤ εi and |λj − λ̃i | ≥ δi for j ∈ N\{i}.
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Hecke eigenvalues

Once we have a proven bound for the Laplace eigenvalue and
proven bounds for the spacing of the Laplace eigenvalues, we can
consider the Hecke eigenvalues.
The rough idea here is that with the previous bounds we can give
bounds on how well

M∑
m=1

c(m)aj(m)

approximates δij . Then using the fact that for our forms a(1) = 1,
we can use our ci(m) to isolate the Hecke eigenvalues of one of
the forms.
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Computing the Laplace eigenvalues

With the same H as before, we define H̃(λ) = λH(λ). Let Q and Q̃
denote the respective matrices of the quadratic forms Q(c,H) and
Q(c, H̃). To find the eigenvalues λj , we seek solutions to the
generalised symmetric eigenvalue problem

Q̃x = λQx .

The matrices Q and Q̃ are already computed when doing the
verification, so this adds little extra time to the code and allows it to
be fully self-contained.
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Computational remarks

I The computations are done in C using a library called ARB,
which does rigorous real and complex arithmetic with arbitrary
precision. This is done using ball arithmetic, a form of interval
arithmetic, which represents its numbers by a midpoint and
radius.

I The minimisation of the quadratic forms is done using the PC
“long double” type, which has a 64-bit mantissa. Since this is
the slowest part of the code, this gives a substantial speed
increase.

I This code is probably unfeasible for levels larger than a few
hundred due to large increase in the number of forms required
to be removed to achieve good precision.

I Currently this method has only been implemented for
square-free level N due to availability of explicit forms of the
Selberg trace formulas with Hecke operators.
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Thanks for listening!
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Example of trace formula, composite square-free level

µ(N)σ1(|n|)√
|n|

h
(

i
2

)
+
∞∑

j=1

h(Rj)aj(n)

=
∑
t∈Z√

D=
√

t2−4n 6∈Q
D>0

cN(D) · g

(
log

(
(|t |+

√
D)2

4|n|

))

+
∑
t∈Z√

D=
√

t2−4n 6∈Q
D<0

cN(D) ·
√
|D/4n|
2π

∫ ∞
−∞

g(u) cosh(u/2)

sinh2(u/2) + |D/4n|
du

+

[
if
√

n ∈ Z :

∏
p|N(p − 1)

12
√

n

∫ ∞
−∞

g′(u)

sinh
(u

2

)du

]
.

cN(D) =
L(1, ψd )

l

∏
p|N

(ψd (p)− 1)
∏
p|l

[
1 + (p − ψd (p))

(l, p∞)− 1
p − 1

]
.
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